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Abstract

Screening designs are used in the early stages of industrial and computer exper-

iments to find the most important input factors affecting a system’s output. They

provide an economical way to remove unimportant factors from further, potentially

costly, experimentation. However, when an experiment has a large number of con-

trol factors and limited number of available runs, it is infeasible to run a traditional

screening design. In these situations, experimenters can use supersaturated designs.

A supersaturated design is a fractional factorial design that can screen a set of k

factors in n runs, where k > n − 1. Unfortunately, they do not always provide

definitive results. Improper and incomplete analysis of supersaturated designs can

cause an experimenter to misclassify active factors and waste resources in subsequent

experiments. In light of these concerns, this research investigates how to construct

efficient and effective supersaturated designs, how to analyze such designs, and how

to strategically plan follow-up runs to designs.
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47 SSD(12,18) with r-rank = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

48 SSD(12,22) with r-rank = 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

49 SSD(12,24) with r-rank = 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

50 SSD(12,41) with r-rank = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

51 Maximum k such that SSD(n, k) has r-rank = g.
Numbers with * are optimal, and numbers in bold
signify new designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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CONSTRUCTION, ANALYSIS, AND

DATA-DRIVEN AUGMENTATION OF

SUPERSATURATED DESIGNS

I. Introduction

Screening designs are used in the early stages of industrial and computer exper-

iments to find the most important input variables, or factors, affecting a system’s

output. They provide an economical way to remove unimportant factors from further

experimentation. Consider, for instance, a system optimization experiment with six

input variables. One common design used in optimization experiments is called a

central composite design (CCD) (Myers et al., 2009). A CCD with with six control

factors and two center points requires 46 experimental runs. Suppose, however, that

two of the input factors had minimal effects on the output. A CCD with four fac-

tors would have required only 26 runs. The presence of the two extraneous variables

increased the number of runs by 20. A simple two-level fractional factorial design

(Montgomery, 2009) could have screened the six original factors into four in only

eight runs. Thus, the screening design and CCD would require 12 fewer runs than

the original design. When a single experimental run costs thousands of dollars, the

benefits of screening are immediately clear.

It is important to separate the factors with large effects on the output (call these

active) from those with minimal or no effect (inactive) as efficiently as possible in

order to save most of the experimental budget for more in-depth experiments. In

certain cases, the number of factors exceeds the number of runs available to test

them. In these situations, experimenters can use supersaturated designs. A super-
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saturated design is a fractional factorial design that can screen a set of k factors in

n runs, where k > n − 1. However, supersaturated designs do not always provide

definitive results. Improper and incomplete analysis of supersaturated designs can

cause an experimenter to misclassify active factors and waste resources in subsequent

experiments.

As test budgets shrink, efficient and effective screening designs will play a more

pivotal role in experimentation. Supersaturated designs are one of the few screen-

ing techniques equipped to study a large number of factors in a limited number of

runs. Despite their problems, they are preferred over naive screening approaches like

subjective opinion about what variables are important. Decision makers want statis-

tically defendable results, not best guesses. Therefore, its crucial to understand how

to use supersaturated designs and how to improve them.

1.1 Research Objective and Scope

Research on supersaturated designs can generally be divided into two sects: how

to construct the designs and how to analyze the designs. Unfortunately, researchers in

the construction and analysis areas have not come to an agreement on the best way to

do either. Moreover, there is a void in the literature on how to add runs to a supersat-

urated design. Therefore, this dissertation investigates how to construct efficient and

effective designs, how to analyze such designs, and how to strategically plan follow-up

runs to supersaturated designs using information from the initial experiment.

We proceeded with the following specific goals:

1. Develop and validate a straightforward method to analyze supersaturated de-

signs. The analysis of supersaturated designs is difficult because of highly com-

plex aliasing structures in the design matrix. Main effects are partially aliased

with each other, creating false positives of important factors. Standard regres-
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sion techniques generally do not work well, and techniques that work better

are difficult for practitioners to implement. Finding an intermediary analysis

method is desirable.

2. Introduce a data-driven methodology to augment supersaturated designs with

follow-up runs to improve screening results. If a supersaturated design did not

provide the experimenter with enough information to comfortably move forward

into the next phase of experimentation, additional runs are needed to study the

factors in more detail. Adding follow-up runs to supersaturated designs is a

relatively new research area. Two papers have been published about adding

follow-on runs to supersaturated designs, but they do so independently of the

data. A better approach would be to analyze the initial data first, and then

prioritize the new runs to clarify discrepancies in the data.

3. Address concerns with the traditional construction criterion for supersaturated

designs, E(s2), and create designs that are optimal under the resolution-rank

criterion. The E(s2) measurement of a supersaturated design measures the

“orthogonality” of a design. By definition, supersaturated designs cannot be

orthogonal, but the desire to reduce a design’s E(s2) has been a major research

thrust for 20 years. However, an E(s2) optimal design may not have the ability

to differentiate between two competing models, even in the noiseless case. A

different criterion, resolution-rank, was introduced by Deng et al. (1996) but

never fully matured. New designs optimal with respect to the resolution-rank

criterion will give experimenters a better opportunity to detect a system’s active

factors.
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1.2 Overview and Organization

The remainder of this dissertation follows a scholarly article format. Chapters II,

III, IV, and V are self-contained research articles on supersaturated designs. Each

contains a literature review of the research relevant to that chapter. The original

contribution of each chapter is as follows:

Chapter II gives an overview of large screening experiments and discusses the

background and terminology of supersaturated designs. The intent of the chapter is

to introduce the reader to supersaturated designs and provide general guidance on

how to construct, analyze, and augment a design. Proposed construction and analysis

techniques are presented, as well as a novel method to add runs to supersaturated

designs. The article was accepted into the Proceedings of the 2013 Industrial and

Systems Engineering Research Conference (ISERC) and was presented at ISERC in

San Jaun, Puerto Rico in May 2013 (Gutman et al., 2013a).

Chapter III is an in-depth exploration of the specific challenges experimenters face

when analyzing data from a supersaturated experiment. The introduction shares some

components with Chapter II, but the crux of Chapter III is on addressing the inherent

difficulties associated with supersaturated designs and developing a straightforward

analysis method to mitigate Type I errors (declaring an inactive factor as active).

Chapter III also contains a comprehensive simulation study of numerous supersatu-

rated design analysis techniques. The article is currently under review for publication

in the Journal of Quality Technology.

Chapter IV introduces an original data-driven methodology to add runs to su-

persaturated designs. In side-by-side comparisons, the proposed Bayesian D-optimal

method outperforms the supersaturated design augmentation techniques in the liter-

ature. The article has been submitted for publication in Computational Statistics &

Data Analysis and is currently undergoing its second review.
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Chapter V addresses concerns with the E(s2)-optimality criterion for two-level

supersaturated designs and introduces a catalogue of new designs with high resolution-

rank, a criterion that directly assesses a supersaturated design’s ability to detect active

factors. Several of the designs presented are shown to be provably optimal. The search

for large supersaturated designs with high resolution-rank is aided by binary integer

programming and design isomorphism properties. This article will be submitted for

publication in the Journal of Statistical Theory and Practice. And lastly, Chapter VI

reiterates the importance of studying supersaturated designs, summarizes all original

research contributions, and provides suggestions for future work.
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II. Large Screening Experiments: An Overview of

Supersaturated Designs for Practitioners

2.1 Introduction

The influential inputs to a process are not always known in advance. As such,

a screening experiment is done to separate factors into the those that are influential

and those that are not. Specifically, screening is the process of using statistically

designed experiments to find the factors that appear to influence a response variable.

Screening is often referred to as “Phase 0” of an experiment to communicate its

importance at the very onset of a test (Myers et al., 2009). For large screening

experiments, researchers have observed that changes in a response variable are usually

caused by a small number of active factors - a concept called “effect sparsity” (Box

and Meyer, 1986). Finding the active factors in a system directs resources for future

experiments because carrying superfluous variables into the more involved Phase I of

experimentation can drastically increases costs.

Traditional screening designs, like fractional factorial designs (Montgomery, 2009)

and Plackett-Burman (Plackett and Burman, 1946) designs, have more runs than con-

trol factors, a necessary condition for standard statistical analysis. However, budget

constraints may be too restrictive for this requirement. Many experiments have a large

pool of control factors - larger than the number of runs available to analyze them.

For example, suppose a weapon system has 40 input factors, but experimenters can

only afford to do 20 runs. What is the best way to perform this experiment? To

answer this, alternative designs are needed that can screen a set of k variables in n

runs, where k > n − 1. The three most popular techniques for large screening ex-

periments are (1) group screening, (2) sequential bifurcation, and (3) supersaturated

designs. In this paper, we briefly discuss the first two methods before turning our
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attention to supersaturated designs. Our goal is to introduce practitioners to basic

concepts and technical issues related to the construction, analysis, and augmentation

of supersaturated designs.

2.1.1 Group Screening and Sequential Bifurcation.

In group screening (Watson, 1961), g groups of factors are each assigned k factors.

For instance, to perform the 40-factor, 20-run military experiment mentioned earlier,

an experimenter could put the 40 factors into 8 groups of 5. The experiment proceeds

using a two-level design with 8 “group factors“, where each group of 5 factors is

assigned to a column in a standard design matrix. A +1 in the design matrix means

each of the 5 factors in the group is set to its high-level, or vice versa for a −1. The

objective is to screen out the inactive groups, and then regroup the factors from active

groups into new groups. See Vine et al. (2008) for a detailed discussion of two-stage

group screening. In group screening, certain assumptions must be satisfied. The most

limiting assumption is that the sign of all effects must be known in advance. So, when

a group is set at its high level (+1), all factors in that group must have a positive

effect on the response. Otherwise, factors within the same group could cancel each

other out. For more on group screening, see Kleijnen (1987) and Morris (2006).

Sequential bifurcation is an extension of group screening, so the same assumptions

must hold. As its name suggests, sequential bifurcation is sequential in nature. In the

first stage, all factors are placed in a single group at their high level. If the group is

active (i.e. contains active factors), it is split (bifurcated) into two subsequent groups,

each of which is tested for importance. The process continues until the active factors

are found. This technique has been useful in computer simulation experiments, and

the reader is referred to Kleijnen et al. (2006) for more information.
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2.2 Supersaturated Designs

Supersaturated designs have less restrictive assumptions than group screening and

sequential bifurcation because the experimenter does not need to know the sign of the

effects in advance. The focus of supersaturated designs is on identifying the important

main effects in a linear model. Consider an experiment with k factors and n runs.

The underlying main-effect model is represented as:

y = β01 + β1x1 + · · ·+ βkxk + ε = Xβ + ε, (2.1)

where y is the response vector, β1, . . . , βk are the unknown model parameters, X =

(1,x1, . . . ,xk) is the model matrix, and ε ∼ N(0, σ2In×n) is the error term. Calculat-

ing the parameter estimates for traditional designs with n > k is done via ordinary

least squares (OLS), b = (X′X)−1X′y. But, when X has more columns than rows,

X′X is singular and the OLS estimates do not exist. Effect sparsity suggests most of

the βi’s in Equation 2.1 are zero, so supersaturated designs are used to remove those

negligible factors from further consideration. Then, when the matrix projects to a

dimension less then n, it’s possible to find an estimable model.

The traditional definition for a supersaturated design is a fractional factorial de-

sign in which the number of factors, k, is larger than n− 1, where n is the number of

runs (Montgomery, 2009). The designs were introduced around 1960 (Satterthwaite,

1959; Booth and Cox, 1962), but they did not gain popularity in the statistics field

until the early 1990’s (Lin, 1993; Wu, 1993; Lin, 1995a). Research on supersaturated

designs has been extremely active since that time and generally falls into two camps:

how to construct designs and how to analyze the data. Section 2.3 reviews the most

popular construction techniques, and Section 2.4 highlights some of the proposed
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analysis methods. A novel approach to add follow-up runs to designs is presented in

Section 2.5, and Section 2.6 concludes the paper.

2.3 Constructing a Supersaturated Design

Table 1 shows a two-level supersaturated design from Holcomb and Carlyle (2002)

to serve as a reference for terms and concepts in this section. Supersaturated designs

are constructed to be “optimal” with respect to some criterion. Two prominent

optimality criteria with similar performance capabilities (Marley and Woods, 2010)

are presented here.

Table 1. Supersaturated design example with 14 factors and 8 runs

Design Factors
Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

1 + + + + + + + + + + + + + +
2 − + − − − + + − − − + − + +
3 + − + − − − + + − − − + − +
4 + + − + − − − + + − − − + −
5 − + + − + − − − + + − − − +
6 − − + + − + − + − + + − − −
7 − − − + + − + − + − + + − −
8 + − − − + + − − − + − + + −

2.3.1 E(s2) Criterion.

In an orthogonal design, the dot product between any two columns, x′ixj, i 6= j

is zero. Therefore, for an orthogonal design matrix Xn×(k+1), X′X = nI(k+1)×(k+1),

so each main effect can be estimated without bias. This is impossible with super-

saturated designs because X has more columns than rows. Since true orthogonality

is impossible, supersaturated designs are constructed to be as “nearly orthogonal as

possible” (Booth and Cox, 1962). A measurement of near-orthogonality is the E(s2)

criterion, which has become the standard criterion for all balanced two-level supersat-
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urated designs. The idea of the E(s2)-criterion is the make the off-diagonal elements

of X′X, on average, as close to 0 as possible; this effectively makes the design “nearly

orthogonal.” Denote the (i, j)th element of X′X as sij. E(s2) is then defined as

E(s2) =
∑

i<j s
2
ij/(k(k − 1)/2), where k is the number of factors in the model. A de-

sign with the lowest possible E(s2) value for a given size is said to be E(s2)-optimal.

Researchers have proposed many systematic and computational construction meth-

ods to create E(s2)-optimal designs (Nguyen, 1996; Tang and Wu, 1997; Bulutoglu

and Cheng, 2004; Ryan and Bulutoglu, 2007; Das et al., 2008), and a great library of

designs is available online at: http://www.iasri.res.in/design/Supersaturated_

Design/SSD/Supersaturated.html

2.3.2 Bayesian D-Optimal Designs.

Another popular criterion used to construct and compare supersaturated designs

is Bayesian D-Optimality (Jones et al., 2008). Bayesian D-Optimality can create

designs of any size with any number of blocks and can also incorporate categorical

variables. Perhaps most important, the designs are computer-generated and construc-

tion is implemented in the JMP statistical software, making it easy for practitioners

to create a design for their specific problem, as opposed to using a catalogued design

which may not have the correct amount of factors or runs.

To create a Bayesian D-Optimal design, assume the common main-effects screen-

ing model in Equation 2.1 holds. Let the prior distribution of the parameters be

β ∼ N(β0, σ
2R−1), where R is some covariance matrix, and the conditional distribu-

tion of y given β be y|β ∼ N(Xβ, σ2I). The posterior distribution for β given y is

then β|y ∼ N(β∗, σ2D), where β∗ = (X′X+R)−1(X′y+Rβ0) and D = (X′X+R)−1.

A Bayesian D-Optimal design, XB, aims to reduce the error variances of the parame-
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ter estimates given in D. This is accomplished by constructing a design that satisfies:

XB = argmaxX|X′X + R|, (2.2)

where | · | is the determinant operator.

Prior information and uncertainty about the parameters must be modeled under

the Bayesian paradigm. Jones et al. (2008) suggest using prior information to split

models terms into two sets: primary terms and potential terms. Primary terms are

assumed active in the true model, whereas potential terms may or may not be active.

Using this information, the p1 primary terms employ a diffuse prior with an arbitrary

prior mean and prior variance tending toward infinity. The infinite variance implies no

knowledge on the main effects of the primary terms, and the non-zero arbitrary mean

implies the main effects are less likely equal to zero. The p2 = (k + 1)− p1 potential

terms are given a prior mean zero and finite variance τ 2σ2, where τ represents the

expected effect of the factor relative to standard error. The prior information is then

reflected in the matrix R. Let R = K/τ 2, where

K =

 0p1×p1 0p1×p2

0p2×p1 Ip2×p2

 . (2.3)

R = K/τ 2 is substituted into Equation 2.2, and the coordinate exchange algorithm

(Meyer and Nachtsheim, 1995) is used to create the design. (The algorithm is dis-

cussed in detail in Section 2.5.) For supersaturated designs, all k control factors are

typically set as potential terms because the experimenter cannot assume they are

active a priori. The intercept term in the model matrix X is the only primary term.

11



2.4 Analyzing a Supersaturated Design

Regardless of the construction method, supersaturated designs are inherently dif-

ficult to analyze because X′X is singular. Moreover, the correlation structure and

interdependencies of a supersaturated design matrix make it hard (sometimes impos-

sible) to find the correct model. Many researchers have investigated this problem

and novel analysis methods have been introduced in the literature. It is important to

note that there is no accepted “best” way to analyze a supersaturated design, as each

method has pros and cons. See Gilmour (2006); Mee (2009); and Georgiou (2012)

for detailed literature reviews of proposed methods. In this section, we highlight

two methods; first, the Dantzig selector method because it has gained popularity in

recent simulation studies. Then, basic regression techniques are discussed (forward

regression and all-subsets regression) because practitioners are familiar with these

methods.

2.4.1 Dantzig Selector.

The Dantzig selector (Candes and Tao, 2007) has recently been applied to the

analysis of supersaturated designs (Phoa et al., 2009). The Dantzig selector searches

for active factors in a supersaturated design via linear programming. To find the

parameter estimates in Equation 2.1, β̂, we solve the linear programming problem

β̂ = arg min
β∈Rp

p∑
i=1

|βi| s.t. ‖X′(y −Xβ̂)‖∞ ≤ δ (2.4)

where | · | is the absolute value, δ is a tuning parameter, and for a vector x, ‖x‖∞ =

max |xi| . The Dantzig selector performed well when compared to other methods in a

simulation study (Marley and Woods, 2010), but it does require a judicious selection

of the tuning parameter. If δ is too high, the linear program may set β̂ = 0, declaring
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all factors inactive. If δ is too small, the program might overfit the model. When

tuned properly, the Dantzig selector is a good analysis method and relatively easy to

implement since many software programs, such as R, can solve linear programs.

2.4.2 Basic Regression Methods.

The assumption of the linear model in Equation 2.1 implies basic subset regression

techniques may be a good starting point for the analysis of supersaturated designs.

Forward and all-subsets have been used with some success (Lin, 1993; Wu, 1993;

Abraham et al., 1999), but all-subsets regression is generally preferable. In forward

regression, we start with an intercept-only model. The contribution of each of the k

main effects is calculated, and whichever variable most improves the model is added.

The process repeats to add additional factors until further addition fails to provide

sufficient model improvement. In all-subsets regression, a model is fit to every possible

combination of factors. For supersaturated designs, this can be a computational issue

because the number of possible models in a large data set can be large. Also, users

should be cautious when using subset section methods because the results are not

always clear. Consider the design in Table 2 having responses generated with the

equation y = −20x1 + 20x5 + 20x8 + ε, ε ∼ N(0, I8).

Table 2. Example Supersaturated Design with Responses

Design Factors with y = −20x1 + 20x5 + 20x8 + ε, ε ∼ N(0, I8)
Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 y

1 + + + + + + + + + + + + + + 18.629
2 − + − − − + + − − − + − + + -20.870
3 + − + − − − + + − − − + − + -20.720
4 + + − + − − − + + − − − + − -21.328
5 − + + − + − − − + + − − − + 20.834
6 − − + + − + − + − + + − − − 19.929
7 − − − + + − + − + − + + − − 20.482
8 + − − − + + − − − + − + + − -20.420
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Suppose a forward regression is used to identify the true active factors. The results

are in Table 3. Notice, however, that forward regression did not do well choosing the

correct parameter estimates. The first factor chosen to be active, x13, is a false effect;

it appears active because the factor is correlated with real active factors. Forward

regression cannot correct the issue. It continues to select inactive factors, and only

one active factor, x5, was detected.

Table 3. Forward Regression Results on Table 2 with Parameter Estimates

Step β13 β5 β11 β12 R2 R2
adj

1 -10.56 0.268 0.156
2 -10.56 10.31 0.523 0.333
3 -10.56 10.31 9.98 0.762 0.584
4 -10.56 13.80 9.98 -6.98 0.850 0.649

Results from all-subsets regression in Table 2 are also troublesome. Although

the true model only has three active factors, best three-factor model found with

all-subsets regression contains x3,x4, and x8. Fortunately, the four-factor model

identifies the true factors, but in a real situation, the form of the underlying model

is obviously unknown. Consequently, the recommendations from such an analysis are

very difficult. Nevertheless, basic regression methods can be helpful, but are certainly

not infallible. For a detailed discussion about the analytical challenges associated with

supersaturated designs, please see Gutman et al. (2013b).

Table 4. All-Subsets Results on Table 2

Number Model Terms R2 AICc
1 x13 0.2679 80.4661
2 x5,x13 0.5232 86.3683
3 x3,x4,x8 0.9996 49.1094
4 x1,x5,x8,x13 0.9999 91.8652
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2.5 Augmenting a Design

With all the problems faced by an experimenter using supersaturated designs, one

thing is clear: more runs would be helpful. This section reviews some of the basic

augmentation techniques for regular designs and then presents a new technique to

augment supersaturated designs.

2.5.1 Augmenting Standard Designs.

To make a computer generated standard design (n > k), the user specifies the

desired number of factors and runs, and a computer algorithm generates a design

to optimize some criteria, usually the D-optimality criteria. In regular designs that

have fewer factors than runs, a D-optimal design, XD is one that maximizes the

determinant

argmaxX|X′X|. (2.5)

D-optimal designs are popular because designs that maximize Equation 2.5 mini-

mize the variance of the design parameters, β. Orthogonal designs, like factorial and

fractional-factorial designs, are D-optimal. For other two-level designs, D-optimal

designs can be generated with the coordinate-exchange algorithm (Meyer and Nacht-

sheim, 1995). The algorithm is summarized in the following steps:

1. For each entry xi,j in the model matrix X, generate a uniform random number

from [−1, 1].

2. At xi,j, replace the random entry with −1 and calculate |X′X|.

3. Replace the same entry with +1 and calculate |X′X|.

4. Choose the value {−1,+1} that results in the largest determinant.

5. Proceed to the next entry in the matrix and repeat the process.
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When the algorithm terminates, all entries in the model matrix X are±1. The process

is repeated many times with different starting values for the xi,j entries. After many

random starts, e.g. 100, the design with the largest determinant is returned as the

D-optimal design, XD.

Augmenting a design applies similar concepts. To explain how to choose the best

possible follow-up runs for an non-saturated experiment, we give an example similar

to one presented in Goos and Jones (2011). Designs in this section were created

with the JMPTM 9.0 statistical software. Consider the model matrix for a screening

experiment with four factors and eight runs:

X∗ =



1 −1 −1 −1 −1
1 +1 +1 +1 −1
1 −1 +1 −1 +1
1 +1 −1 +1 +1
1 −1 +1 +1 +1
1 +1 +1 −1 −1
1 +1 −1 −1 +1
1 −1 −1 +1 −1


(2.6)

It’s easy to check the matrix X∗′X∗ = 8I5. So, the design is orthogonal and hence

optimal for the main-effect model

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε. (2.7)

After the initial eight runs, the experimenter may want to estimate two-factor

interactions. In this case, the model in Equation 2.7 is insufficient. To estimate the

four main effects and six two-factor interactions, the new model becomes

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β12x1x2

+ β13x1x3 + β14x1x4 + β23x2x3 + β24x2x4 + β34x3x4 + ε.

(2.8)
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The model matrix for the new model with interaction terms is constructed by adding

the interaction columns (i.e. x1x2, x1x3, . . . ) to the original model matrix, X∗. This

gives the new model matrix, X1, in Equation 2.9. X1 has 11 columns: one for the

intercept, four for the main effects, and six for the two factor interactions.

X1 =



1 −1 −1 −1 −1 +1 +1 +1 +1 +1 +1
1 +1 +1 +1 −1 +1 +1 −1 +1 −1 −1
1 −1 +1 −1 +1 −1 +1 +1 −1 +1 −1
1 +1 −1 +1 +1 −1 +1 −1 −1 −1 +1
1 −1 +1 +1 +1 −1 −1 +1 +1 +1 +1
1 +1 +1 −1 −1 +1 −1 −1 −1 −1 +1
1 +1 −1 −1 +1 −1 −1 −1 +1 −1 −1
1 −1 −1 +1 −1 +1 −1 +1 −1 +1 −1


(2.9)

The matrix X1, without follow-up runs, is supersaturated because it does not

have enough runs to estimate all 11 effects. Because the matrix has more columns

than rows, some columns are linearly dependent. Notice that certain factors in X1are

completely aliased: x1 = −x2x4, x2 = −x1x4, and x4 = −x1x2. Augmenting the

design will resolve the linear dependencies. We could, of course, use the fold-over

technique (Montgomery, 2009), but this will double the total run size to 16. Adding

runs with the D-optimal approach lets us choose the number of additional runs. In

this case, augmenting the design with four runs will give a total of 12 runs, which

will be enough to estimate all main effects.

Denote the additional runs of the model matrix X2. The final form of the model

matrix X is given by
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X =

(
X1

X2

)
=



1 −1 −1 −1 −1 +1 +1 +1 +1 +1 +1
1 +1 +1 +1 −1 +1 +1 −1 +1 −1 −1
1 −1 +1 −1 +1 −1 +1 −1 −1 +1 −1
1 +1 −1 +1 +1 −1 +1 +1 −1 −1 +1
1 −1 +1 +1 +1 −1 −1 −1 +1 +1 +1
1 +1 +1 −1 −1 +1 −1 −1 −1 −1 +1
1 +1 −1 −1 +1 −1 −1 +1 +1 −1 −1
1 −1 −1 +1 −1 +1 −1 +1 −1 +1 −1
1 . . . . . . . . . .
1 . . . . . . . . . .
1 . . . . . . . . . .
1 . . . . . . . . . .



(2.10)

The entries for the final four runs are chosen to maximize the determinant of the

final information matrix X′X. A D-optimal follow-up design will maximize |X′X| =

|X′1X1 + X′2X2|, where X1 is fixed. It’s important to take into account the entire

design matrix. “Not doing so, by just maximizing |X′2X2|, will lead to a follow-up

experiment that pays equal attention to the main effects, about which we already have

substantial information from the initial experiment,” (Goos and Jones, 2011, pp. 63).

The coordinate-exchange algorithm constructed the following complete model matrix.

X =



1 −1 −1 −1 −1 +1 +1 +1 +1 +1 +1
1 +1 +1 +1 −1 +1 +1 −1 +1 −1 −1
1 −1 +1 −1 +1 −1 +1 −1 −1 +1 −1
1 +1 −1 +1 +1 −1 +1 +1 −1 −1 +1
1 −1 +1 +1 +1 −1 −1 −1 +1 +1 +1
1 +1 +1 −1 −1 +1 −1 −1 −1 −1 +1
1 +1 −1 −1 +1 −1 −1 +1 +1 −1 −1
1 −1 −1 +1 −1 +1 −1 +1 −1 +1 −1
1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
1 −1 +1 −1 −1 −1 +1 +1 −1 −1 +1
1 +1 −1 −1 −1 −1 −1 −1 +1 +1 +1
1 −1 −1 +1 +1 +1 −1 −1 −1 −1 +1



(2.11)
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The new matrix is no longer singular, so no columns are completely aliased. There-

fore, the combination of the original matrix, X1 and the follow-up design, X2, has

enough information to estimate all main effects and two-factor interactions in Equa-

tion 2.8. If too much time passes between the original and follow-up experiments, a

blocking factor can be added to test if the mean response shifted over time.

2.5.2 Augmenting Supersaturated Designs.

Next, the above methods are applied to augment supersaturated designs. There

is little research in this area; two recent papers (Gupta et al., 2010, 2012) discuss

some theoretical augmentation strategies. For instance, an E(s2)-optimal design can

be augmented with additional runs to create a new class of “extended E(s2)-optimal”

supersaturated designs with new lower bounds, but this is independent of any analysis

on the initial experiment. It may be beneficial to analyze the initial experiment first

and use the response data to strategically choose the additional runs. Such a method

is presented here.

Let’s consider the supersaturated design in Table 2. Suppose the experimenter

wants to know the three most important factors. Further investigation of the data

with all-subsets regression revealed the two best three-factor models to be:

1. f1 = −0.433 + 20.522x3 + 20.281x4 − 20.841x8 with R2 = 0.9996

2. f2 = −0.433− 20.508x1 + 20.295x5 + 19.962x8 with R2 = 0.9995

Notice that f2 is the true underlying model. An experimenter, of course, will not

recognize this after the first eight runs because the top two models are essentially

identical in terms of the R2 criterion, which measures how well the function fits the

data (R2 = 1 implies perfect fit). Now suppose the experimenter wants to test which

model is really generating the response data. An additional run can do this. In
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essence, there are two “competing“ models, and a new run is required to differentiate

the models as much as possible.

One way to differentiate two models to choose an additional run to maximize

the distance between the two models’ predicted values: ŷ1 = f1(x3, x4, x8) and ŷ2 =

f2(x1, x5, x8). Thus, we want to maximize |ŷ1 − ŷ2|. This criterion is called the

Maximum Differences between Predictions (MDP) (Jones et al., 2007). Let S be

the set of all factors in the design and M be the set of all factors in the models of

interest; i.e. M = {x1, x3, x4, x5, x8} and S = {x1, x2, . . . , x14}. Now, suppose the

experimenter can add a ninth run. The first objective is to choose the appropriate

factor levels for all xi ∈M to maximize the MPD:

max
∀xi∈M

|ŷ1 − ŷ2|. (2.12)

For all factors not in M , factor levels are chosen to optimize some other design

criterion. In Section 2.5.1, runs were added to standard designs to optimize the

D-optimality criterion, which will not work for supersaturated designs because the

determinant of X′X is zero when X has more columns than rows. As such, another

criterion is needed. To mimic the goal of E(s2) in Section 2.3.1, factor levels are

chosen to reduce the pairwise correlations of the design matrix. Thus, the second

objective is choosing the appropriate factor levels for all xi ∈ S \M to minimize:

min
∀xi∈S\M

∑
i<j

(x′ixj)
2. (2.13)

Like the augmentation in Section 2.5.1, this procedure is carried out with the

coordinate-exchange algorithm from Section 2.5.1. First, the design in Table 2 is

augmented with a ninth row of random numbers generated uniformly in the range

[-1,1] to give baseline values for |ŷ1 − ŷ2| and
∑

i<j(x
′
ixj)

2. Then, for each xi ∈ M ,
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test whether a +1 or −1 optimizes the MPD in Equation 2.12. This is done in Table

5. The value of x1 for the ninth run, x1,9, was initially set to 0.86. If x1,9 = −1, the

MPD |ŷ1 − ŷ2| = 79.28. If x1,9 = +1, the MPD |ŷ1 − ŷ2| = 38.27. Thus, the factor

level for x1,9 is set to −1 because it provides the largest separation between models.

The process continues by assigning factor levels for the remaining factors in M .

Table 5. Choosing Factor Levels to Optimize MPD

Factors in M x9,1 x9,3 x9,4 x9,5 x9,8

U(-1,1) 0.86 -0.53 -0.15 0.52 0.84
|ŷ1 − ŷ2| with −1 79.28 88.89 106.20 75.32 40.80
|ŷ1 − ŷ2| with +1 38.27 47.84 65.64 115.91 122.41

Factor Level -1 -1 -1 1 1

To choose factor levels for the remaining factors in S \M , test whether a +1 or

−1 optimizes Equation 2.13. In Table 6, x9,2 was initially set to -0.54. If x9,2 = −1,∑
i<j(x

′
ixj)

2 = 471.54. If x9,2 = +1,
∑

i<j(x
′
ixj)

2 = 478.54. Therefore, −1 is the best

choice for the factor level because it provides a smaller value. The process continues

for the remaining variables to choose the factor levels for the ninth run.

The response for the addition run,

(−1,−1,−1,−1, 1,−1,+1,+1,+1,+1,+1,−1,+1,+1),

is 60.332. The best three-factor model on entire design contained factors x1,x5, & x8

had R2 = 0.9998, so there is greater evidence that f2 is the true underlying model.

Further, the model factors x3,x4,x8 now has R2 = 0.0461, which indicates it is not the

underlying model. The additional run effectively discriminated between the top two

competing models. Note that due to the random start, this run is a local optimum.

The process can be repeated several times to find a more suitable run.

The example highlights how using information from the initial supersaturated de-

sign can improve model selection. Also, had the original models been incorrect, the
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additional run would still provide valuable information by removing certain models

from contention. To generalize this approach, experimenters can adapt this method

in a few ways. First, if more than two models are of interest, the MPD in Equation

2.12 can be replaced with an objective function to maximize the minimum distance

between any pair of predicted values: max∀xi∈M{mini 6=j |ŷi − ŷj|}. And, if the exper-

imenter can add more than one run, all additional runs can be chosen to minimize

min∀xi∈S
∑

i<j(x
′
ixj)

2. A formalized augmentation strategy for model discrimination

with supersaturated designs is an area for future research. For a more general aug-

mentation strategy using the Bayesian D-optimality criterion, see Gutman et al.

(2013c).

2.6 Conclusions

Supersaturated designs can be used in large screening experiments when the num-

ber of factors exceeds the number of available runs. However, there seems to be a

general confusion about supersaturated designs from the practitioner’s view (Gilmour,

2006). Our goal was to give a general overview of the designs for the practitioner’s

sake. We discussed some construction and analysis methods, outlined some of the

issues facing experimenters and analysts who use them, and we also suggested an

augmentation strategy to clarify discrepancies in the data analysis.
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III. Supersaturated Designs: Analytical Challenges and

New Analysis Methods

In the past twenty years, researchers have produced a multitude of new con-

struction and analysis techniques to study supersaturated designs. Unfortunately,

supersaturated designs can be a nebulous concept to practitioners. Analysis methods

can be confusing and results from such experiments are not always clear. In this

paper, we aim to make practitioners more comfortable with these designs by review-

ing basic concepts and recent developments from a macro level. We discuss popular

construction methods and, via explicit examples, highlight the challenges faced when

analyzing data from a supersaturated experiment. Additionally, we present new,

easy-to-use analysis methods and perform simulation studies on well-known super-

saturated design matrices.

3.1 Introduction

“We all live in a supersaturated world - there are always more variables
than we can handle.”

A supersaturated design is an experimental design with more factors than runs.

The opening quote by statistician Dennis Lin (1995b) candidly suggests that, in

actuality, all experiments have more factors than runs because any number of variables

may influence a system’s response. Prior to running a formal experiment, a subject

matter expert must sift through the many possible control factors and remove those

not expected to affect the system. In many cases, the remaining k factors can then be

placed in a standard screening design with n > k runs to find which are truly active.

When this is not possible, experimenters can use supersaturated designs.
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Like traditional screening methods, e.g. Plackett-Burman designs (1946) or Res-

olution III and IV fractions, the first supersaturated designs were constructed to be

balanced and two-level. They date back to 1959 when Satterthwaite introduced ran-

dom balanced designs, which randomly assigned balanced columns to a design matrix

with more factors than runs. Soon after, Booth and Cox (1962) created the first

systematic supersaturated designs. Statisticians, however, did not consider the de-

signs well-suited for experiments. If a matrix has more factors than runs, unbiased

estimates of main effects are impossible, and the tradeoff between efficient run-size

and biased estimates was deemed to great. Consequently, research on the subject was

dormant for more than 30 years until Lin (1993) introduced some new designs and

rekindled interest in the field.

Recently, supersaturated designs have become more sophisticated than their two-

level roots. Jones et al. (2008) introduced custom computer-generated designs, Sun

et al. (2011) discussed optimal mixed-level designs, and Liu and Liu (2011) created

designs with a large number of levels. As the construction methods became more

adaptive, analysis techniques became more complex. Examples include a contrast-

based method (Holcomb et al., 2003), a staged dimensionality reduction (Lu and

Wu, 2004), linear-programming via the Dantzig selector (Phoa et al., 2009), and

a cluster analysis strategy (Li et al., 2010). Of course, this is not an exhaustive

list of either construction or analysis methods. (See Georgiou (2012) for a detailed

review.) Researchers continue to do innovative work in both areas, but practitioners

are still hesitant to use supersaturated designs (Gilmour, 2006). In our view, there

are two reasons for this: 1) the biased main-effect estimates are too worrisome, and

2) supersaturated designs are becoming esoteric because most research is done at a

theoretical level. Consequently, practitioners do not fully understand the pros and

cons of supersaturated designs or how to use them. Here, we focus on the designs
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from a higher level for the practitioner’s sake. Our objective is for experimenters to

appreciate the value of supersaturated designs but also understood the limitations

and risks involved when using them for screening experiments.

3.2 Supersaturated Designs

The traditional definition for a supersaturated design is a fractional factorial de-

sign in which the number of factors, k, is larger than n − 1, where n is the number

of runs. While this definition is accurate, it is also limiting. The term supersaturated

is in reference to the insufficient degrees of freedom needed to estimate all effects,

not necessarily just main effects. As Bradley Jones, Principal Research Fellow for

JMP, said, “...in some sense, every experiment is a supersaturated design,” because

if we consider all possible terms in the empirical model - i.e. all two-way interac-

tions, quadratic terms, etc. - the number of terms would be greater than the number

of runs available to estimate them (Jones, 2011). For example, a Plackett-Burman

design is saturated in its main effects, but if we consider two-way interactions, it

becomes supersaturated. The new three-level definitive screening designs by Jones

and Nachtsheim (2011) are also supersaturated if we consider main effects, two-factor

interactions, and quadratic terms. For this paper, we focus on traditional main-effect

supersaturated designs, in which the number of independent factors, k, is greater than

n−1, as opposed to model-effect supersaturated designs, where k < n, but the number

of model terms, p, is greater than n− 1. If p = n, the design is saturated.

Regardless of the type of supersaturated design, main-effect or otherwise, they

are inherently difficult to analyze. The crux of the analysis problem is that the

model matrix X has more columns than rows. Therefore, it is rank deficient and

unique parameter estimates for the hypothesized model, y = Xβ + ε, do not exist.

Fortunately, researchers have observed that changes in a response variable are usually
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caused by a small number of factors, a concept referred to as “effect sparsity” (Box

and Meyer, 1986). An analogous concept is the Pareto Principle, or the “law of the

vital few.” As such, the goal of analyzing a supersaturated design is to separate the

few active factors from the many inactive. This is easier said than done. Since main

effects are confounded with each other, it can be difficult to find the true important

factors. In addition, inactive factors can appear to have an effect and active factors

may be hidden by noise.

Despite their problems, supersaturated designs are preferred over naive screening

approaches like subjective opinion about which variables are important. Budget con-

straints sometimes necessitate such designs and researchers have found value in their

use. Holcomb et al. (2007) used a supersaturated design in a study of turbine engine

development; Rais et al. (2009) analyzed active factors in the preparation of sulfated

amides of olive pomace oil fatty acids; Matsuura et al. (2010) applied supersaturated

designs to robust parameter design; and Scinto et al. (2011) used a supersaturated

design to screen factors for gasoline-powered engine fuel economy.

To familiarize experimenters with supersaturated designs, we proceed with the

following outline: In the next section, we briefly review how supersaturated designs

are constructed. In §4, we highlight common pitfalls to be aware of when searching

for the few active factors. Then we review different ways to analyze the designs

and present two straightforward analysis methods. In §5, we take a detailed look at

the popular Williams (1968) data set and correct an oversight in simulation studies

using the design matrix. We also perform a simulation study on the 138 factor,

24 run matrix from Lin (1995a). We conclude with some practical guidelines and

considerations.
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Table 7. Supersaturated Design Example with 8 Runs and 14 Factors

Design Factors
Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

1 + + + + + + + + + + + + + +
2 − + − − − + + − − − + − + +
3 + − + − − − + + − − − + − +
4 + + − + − − − + + − − − + −
5 − + + − + − − − + + − − − +
6 − − + + − + − + − + + − − −
7 − − − + + − + − + − + + − −
8 + − − − + + − − − + − + + −

3.3 Choosing a Supersaturated Design

Booth and Cox (1962) proposed a systematic construction of balanced designs

and created the first supersaturated designs to be “as nearly orthogonal as possible.”

Their measurement of near-orthogonality was E(s2), and it became the standard

criterion for all balanced two-level supersaturated designs. It is helpful to explain the

criterion with an example. Consider the two-level supersaturated design in Table 7,

which appeared in Holcomb and Carlyle (2002), and the main-effects model,

y = β01 + β1x1 + · · ·+ β14x14 + ε = Xβ + ε (3.1)

where y is the response vector, β0 . . . β14 are the unknown model parameters, and

ε ∼ N(0, σ2I8) is the error term. In order calculate the Ordinary Least Squares

equation, β̂ = (X′X)−1X′y, it is necessary to find (X′X)−1. As mentioned, X is

rank deficient, so X′X is singular. However, the structure of X′X contains useful

information and is key to characterizing a supersaturated design. The design in

Table 7 has X′X equal to:
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X′X =



1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0 4 0 0 −4 4 4 0
0 0 8 0 0 0 0 0 0 4 0 0 −4 4 4
0 0 0 8 0 0 0 0 4 0 4 0 0 −4 4
0 0 0 0 8 0 0 0 4 4 0 4 0 0 −4
0 0 0 0 0 8 0 0 −4 4 4 0 4 0 0
0 0 0 0 0 0 8 0 0 −4 4 4 0 4 0
0 0 0 0 0 0 0 8 0 0 −4 4 4 0 4
0 4 0 4 4 −4 0 0 8 0 0 0 0 0 0
0 0 4 0 4 4 −4 0 0 8 0 0 0 0 0
0 0 0 4 0 4 4 −4 0 0 8 0 0 0 0
0 −4 0 0 4 0 4 4 0 0 0 8 0 0 0
0 4 −4 0 0 4 0 4 0 0 0 0 8 0 0
0 4 4 −4 0 0 4 0 0 0 0 0 0 8 0
0 0 4 4 −4 0 0 4 0 0 0 0 0 0 8



(3.2)

In an orthogonal design, all off-diagonal elements are 0, signifying each main

effect is independent of all others. For a supersaturated design, this is not possible.

However, the idea of the E(s2) criterion is to make the off-diagonal elements, on

average, as close to 0 as possible, effectively making the design “nearly orthogonal.”

If we denote the (i, j)th element of X′X as sij, then we can define E(s2) as

E(s2) =
∑
i<j

s2
ij/(k(k − 1)/2), (3.3)

where k is the number of factors in the model. Because E(s2) > 0 whenever the

number of factors exceeds the number of runs, it is helpful to have lower bounds

on E(s2) for a given design size to know whether or not a design is E(s2)-optimal.

See Nguyen (1996), Tang and Wu (1997), Bulutoglu and Cheng (2004), Ryan and

Bulutoglu (2007), and Das et al. (2008) for more information on E(s2) lower bounds

and E(s2)-optimal designs.

Another popular criterion to construct and compare supersaturated designs is

Bayesian D-Optimality. This criterion can be used on regular designs, as in Du-

Mouchel and Jones (1994), but Jones et al. (2008) adapted the technique to create
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supersaturated designs. This criterion and its construction method are more versatile

than E(s2) because Bayesian D-Optimal designs can be any size with any number of

blocks and can incorporate categorical variables. They can also handle interactions.

We omit the technical details for brevity, but note their construction is implemented

in the JMP statistical software, making it easy for practitioners to create a design. An

overview of other design criteria and construction methods can be found in Gilmour

(2006), but E(s2) and Bayesian D-Optimal designs are the most prevalent. Both are

also easy to construct in software or find online. To make a Bayesian D-Optimal

design in JMP, start the DOE Custom Design, change the “Estimability” of potential

model effects from “Necessary” to “If Possible,” and specify a desired number of runs.

A catalog of various other designs, like E(s2)-optimal, is available online at:

http://www.iasri.res.in/design/Supersaturated_Design/SSD/Supersaturated.html

For experimenters, this means it is relatively easy to find a suitable design ma-

trix. Thus, the question “How should supersaturated designs be constructed?” is

more thoroughly answered than “How should supersaturated designs be analyzed?”.

Researchers have optimality criteria they are trying to reach and construct designs

to meet it. Moreover, Marley and Woods (2010) found little difference in the screen-

ing performance of E(s2) and Bayesian D-Optimal Designs. The challenging part,

regardless of construction, is analyzing the results.

3.4 Analyzing a Supersaturated Design

When analyzing a main-effect supersaturated design, we assume the underlying

model is linear with only main effects:

y = β01 + β1x1 + · · ·+ βkxk + ε = Xβ + ε, (3.4)
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where ε ∼ N(0, σ2In) and most of the βi’s are negligible by effect sparsity. Be-

cause the model is assumed linear, it seems natural to analyze experimental data

with traditional subset selection methods from linear regression. Indeed, these were

the first methods used to analyze supersaturated designs. Wu (1993) used forward

regression to find active factors, while Lin (1993) suggested stepwise regression and

later used normal (or half-normal) plots in addition to stepwise regression (1995b).

Abraham et al. (1999) advocated all-subsets regression when possible because they

found all-subsets outperformed stepwise regression. Yet, they “urged caution” in us-

ing supersaturated designs because analytical recommendations are not always clear.

Even if the matrix is “optimal” with respect to some design criterion, the singularity

of X′X makes supersaturated designs tricky to analyze with any method. The few

active and many inactive factors are tangled together by a complex aliasing structure,

which is quantified in X′X. For example, scaling X′X matrix in Equation 3.2 by 1/8

gives us the complete aliasing structure of the design in Table 7.

1

8
X′X =



1 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13 β14

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 .5 0 0 −.5 .5 .5 0
0 0 1 0 0 0 0 0 0 .5 0 0 −.5 .5 .5
0 0 0 1 0 0 0 0 .5 0 .5 0 0 −.5 .5
0 0 0 0 1 0 0 0 .5 .5 0 .5 0 0 −.5
0 0 0 0 0 1 0 0 −.5 .5 .5 0 .5 0 0
0 0 0 0 0 0 1 0 0 −.5 .5 .5 0 .5 0
0 0 0 0 0 0 0 1 0 0 −.5 .5 .5 0 .5
0 .5 0 .5 .5 −.5 0 0 1 0 0 0 0 0 0
0 0 .5 0 .5 .5 −.5 0 0 1 0 0 0 0 0
0 0 0 .5 0 .5 .5 −.5 0 0 1 0 0 0 0
0 −.5 0 0 .5 0 .5 .5 0 0 0 1 0 0 0
0 .5 −.5 0 0 .5 0 .5 0 0 0 0 1 0 0
0 .5 .5 −.5 0 0 .5 0 0 0 0 0 0 1 0
0 0 .5 .5 −.5 0 0 .5 0 0 0 0 0 0 1



(3.5)

The rows (or columns) of 1
8
X′X in Equation 3.5 reveal that every factor estimate is

biased by four other factors, each with a ±0.5 correlation. For instance, the estimate

of factor 1 is correlated with factors 8, 11, 12, and 13. For a generic supersaturated
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design, the rows of 1
n
X′X give the biased estimates for each main effect,

E(β̂i) = βi +
∑
j 6=i

ρijβj, (3.6)

where ρij is the correlation between factors xi and xj. We refer to a factor’s biased

estimate equation as its aliasing chain. Although the aliasing chains complicate anal-

ysis, basic subset selection methods are still used for their simplicity and familiarity

to experimenters, and most are available in basic statistical software programs.

3.4.1 Inherent Difficulties.

In this section, we show how common analysis methods can fail when analyzing

data from a supersaturated design. We highlight four specific causes of analysis

difficulties:

1. Inactive factors are inflated by active factors.

2. Active factors are hidden by noise and the aliasing structure.

3. Many models explain the data well.

4. The assumption of effect sparsity does not hold.

For each of the four analytical challenges, we will construct an example model and

analyze the responses with tradition regression methods to highlight how the methods

can fail. For consistency, we refer to the 14 factor, 8 run E(s2)-optimal design shown

in Table 7.

First, some preliminaries. There are different thoughts on how many active factors

a supersaturated design can detect; Holcomb et al. (2003) suggest a maximum of n/2,

while Marley and Woods (2010) suggest n/3. In either case, notice how the ratio of

active factors is dictated by the number of runs, n, and not by the total number of
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factors, k. In many supersaturated designs, the factor-to-run ratio is so large that

if we searched a fraction of k, there is a possibility we would be searching for more

active factors than runs. If this was the case, many different models would fit the data

perfectly. For example, consider the design in Table 7, and suppose we generated an

arbitrary response, y = Xβ + ε. If we fit a model with factors x1, . . . ,x7 and the

intercept, we create an invertible model matrix X∗. This will generate an estimate,

β∗, that will fit the data exactly because y = X∗β∗ implies β∗ = X∗−1y. This is true

of any supersaturated design if there exists an invertible submatrix made from n− 1

factor columns of the original design matrix. Hence, the number of active factors

is limited to a fraction of n and not k. For our examples, we will search for up to

n/2 = 4 active factors. Also, forward, stepwise, and all-subsets regression require

user-input that can affect model selection. While many criteria are used to build and

compare models, we will focus on R2, R2
adj, and the corrected Akaike’s Information

Criterion, AICc. We analyzed the data using the following options in the statistical

software JMP:

• JMP’s Half Normal Plot (v9). In a Half Normal plot, effects that look like

random noise will roughly fall in a straight line. Any effect that considerably

deviates from the line is identified as active.

• Forward regression in 4 steps with the minimum AICc stopping rule.

• Stepwise regression (aka “Mixed” direction in JMP) with p-value to enter and

p-value to leave set to 0.1.

• All-Subsets regression (aka “All Possible Models” in JMP) for up to n/2 = 4

factors.

It is also worthwhile to define a contrast. For balanced two-level designs, a factor

contrast is the sum of the responses when a factor is at its high level (+1), minus the
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sum of the responses when the factor is at its low level (−1). More simply, a contrast

vector, C, can be calculated as C = X′y (Holcomb et al., 2003). In an orthogonal

design, the contrast vector clearly identifies the effects of each factor, without bias. In

a supersaturated design, there is danger in analyzing just the contrast vector. Ideally,

an active factor will have a large contrast to signify the response variable changed

substantially when the factor changed, but this is not always the case.

3.4.1.1 Example 1: Inflated Inactive Factors.

Table 8. Supersaturated Design with Inflated Inactive Factor

Design Factors with y = 3x1 + 15x8 + 10x9 + 20x11 + ε, ε ∼ N(0, I8)
Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 y

1 + + + + + + + + + + + + + + 47.232
2 − + − − − + + − − − + − + + -7.432
3 + − + − − − + + − − − + − + -13.096
4 + + − + − − − + + − − − + − 8.690
5 − + + − + − − − + + − − − + -27.867
6 − − + + − + − + − + + − − − 22.397
7 − − − + + − + − + − + + − − 11.387
8 + − − − + + − − − + − + + − -40.700

C 3.6 40.6 56.7 178.8 -20.5 42.4 75.6 129.8 78.3 1.5 146.6 9.0 15.0 -2.9

A common source for error when analyzing a supersaturated design is the presence

of a false effect - an inactive factor whose parameter estimate is inflated because

it’s aliased with active factors. Consider the design in Table 8 with responses y =

3x1 + 15x8 + 10x9 + 20x11 + ε, ε ∼ N(0, I8). Notice that factors x4, x8, and x11

have the largest contrasts in Table 8, yet the Half Normal Plot in Figure 1 suggests

x4, x9, and x14 are active. The initial analysis is already unclear because the two

methods do not coincide and, in both cases, an inactive factor, x4 appears to have

the largest impact on the response. Investigating further, we fit the first four factors

with forward regression to get the results in Table 9.

Factors x4,x6,x9, and x14 were selected as “active”, but only x9 is truly active.

The rest are false positives with inflated effects due to the aliasing structure in the

design. In Step 1, x4 was flagged as active, and if we examine its aliasing chain, we
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Figure 1. Half Normal Plot of Main-Effect Estimates for the Design in Table 8

Table 9. Forward Regression Results on Table 8 with Parameter Estimates

Step β4 β14 β9 β6 R2 R2
adj

1 22.35 0.714 0.666
2 29.56 14.41 0.937 0.911
3 34.55 19.91 -7.49 0.990 0.983
4 33.31 16.29 -5.63 2.48 0.996 0.990

can see why this is true. From Equations 3.5 and 3.6, the estimate for β4 is really

E(β̂4) = β4 +
1

2
β8 +

1

2
β9 +

1

2
β11 −

1

2
β14. (3.7)

β̂4 is large because it is pulling information from three real effects, β8 = 15, β9 = 10,

and β11 = 20. Their combined effect in the aliasing chain creates a false effect in

β̂4 greater than any one of the true parameter estimates, including β11 which is 20

times larger than the noise level. Notice in Step 1, β̂4 = 22.35 ≈ 1
2
15 + 1

2
9 + 1

2
20

(noise causes the difference). Moreover, once a false effect is flagged, it is less likely

for the true active factors in its aliasing chain to register because the active factors

essentially lost their information to β̂4. Then, in Step 2, the only inactive factor in

x4’s aliasing chain, x14, was put into the model to counteract the false explanatory

power of β4. Analyzing the data with stepwise regression yielded similar results, as

x4,x9, and x14 were flagged as active.
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The position of the active factors in x4’s aliasing chain is to blame here. x4’s

aliasing chain contains three active factors, and with correlations of ±0.5, three active

factors are guaranteed to inflate β̂4 with a false effect larger than at least one true

effect. Without loss of generality, suppose x8,x9, and x14 are active with positive

effects, and min{β8, β9, β14} = β8. Then, E(β̂4) = β4 + 1
2
β8 + 1

2
β9 + 1

2
β11 − 1

2
β14 ≥

1
2
β8 + 1

2
β8 + 1

2
β8 = 3

2
β8 > β8. This can be problematic for sequential procedures,

especially when the false effect is greater than all effects in the aliasing chain.

Table 10. All-Subsets Results on Table 8

Number Model Terms R2 AICc
1 x4 0.7139 77.0955
2 x4,x14 0.9365 74.3824
3 x8,x9,x11 0.9929 75.4935
4 x1,x8,x9,x11 0.9994 112.237

All-subsets regression may be a viable option to avoid this pitfall. We performed

all-subsets using JMP and searched for the best models with up to 4 factors. The

results are shown in Table 10; notice how the best four-factor model correctly iden-

tified all active factors. However, also notice the best two-factor model has two false

effects with a reasonably high R2 value. One might expect the factors appearing in

the best two-factor model to appear in the best three or four-factor model, but the

aliasing structure of supersaturated designs can prevent this. Fortunately, because

supersaturated designs are screening experiments, the main goal is to select a subset

of factors for follow-up runs. In this case, a practitioner could easily carry the six

factors identified from all-subsets into the next phase of testing, thereby reducing the

number of factors from 14 to 6, which is an effective screen.

However, it is important to highlight an overriding issue with these methods,

and that is the apparent inability of R2 or R2
adj to differentiate models. The AICc

criterion seems to do a better job, but only at comparing models of the same size.

For instance, review the R2 and R2
adj values from Example 1. The forward regression
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results in Table 9 show R2 = 0.996 and R2
adj = 0.990 for the wrong model. The correct

model, found via all-subsets, had slightly higher values: R2 = 0.999 and R2
adj = 0.999.

Unfortunately, an experimenter would most likely never catch the mistake because

the R2 and R2
adj values for the wrong model are close to one. While the models have

similar R2 and R2
adj values, the correct model has a noticeably smaller AICc value:

112.2372 compared to 127.8558. Be careful, though, not to choose designs based on

AICc alone. Lower AICc values are ideal, but it is best to compare the AICc values

of models with the same number of variables. Otherwise, you might underfit the

model. In Table 10, the correct model has the highest AICc value when compared to

the smaller models, but it has the lowest AICc value of all models with four factors.

3.4.1.2 Example 2: Hidden Active Factors.

When an inactive factor appears to have the largest effect on the response, forward,

stepwise regression, and Half-Normal plots can perform poorly. In this example, we

will see how mistakes can still occur if an active factors does have the largest effect

on the response. A complex aliasing structure can not only inflate the effect of an

inactive factor, but it can also completely hide the true effect of an active factor,

making it indistinguishable from noise.

Table 11. Supersaturated Design with Hidden Active Factor

Design Factors with y = 9x3 + 10x4 − 20x9 + ε, ε ∼ N(0, I8)
Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 y

1 + + + + + + + + + + + + + + -0.110
2 − + − − − + + − − − + − + + 0.264
3 + − + − − − + + − − − + − + 19.447
4 + + − + − − − + + − − − + − -18.966
5 − + + − + − − − + + − − − + -20.654
6 − − + + − + − + − + + − − − 38.108
7 − − − + + − + − + − + + − − -20.293
8 + − − − + + − − − + − + + − -0.354

C 2.6 -76.4 76.1 0.0 -80.3 78.4 1.2 79.5 -117.5 36.5 38.5 -0.1 -35.8 0.5

Let’s revisit the 8 factor, 14 run design but with responses generated with the

equation y = 9x3 + 10x4 − 20x9 + ε, ε ∼ N(0, I8). The design, responses, and
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contrasts are in Table 11. First, notice that the largest contrast, in absolute value,

belongs to an active factor, x9, which is ideal. The Half-Normal Plot in Figure 2 also

detected x9. However, the contrast of x4 is 0.0 even though it has a larger effect than

x3. So, superficially, x4 has no effect because there is negligible differences in the

response variables as x4 changes from its low level to high level.
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Figure 2. Half Normal Plot of Main-Effect Estimates for the Design in Table 11

Here, an active factor, x4 was cancelled out because it is aliased with another

active factor, x9, having an opposite effect. The aliasing chain for x4 in Equation

3.7 reveals that the large positive value of β9 effectively hides β̂4 because E(β̂4) =

β4 + 1
2
β9 = 10 + 1

2
(−20) = 0. Again, the contrasts and Half-Normal Plot do not

give much useful information. Forward and stepwise regression, unfortunately, also

fail. Table 12 shows the results with forward regression, and x9 was selected as

active in the first step. In Step 2, however, x8 registered as active because E(β̂8) =

β8 + 1
2
β1 + 1

2
β3 + 1

2
β4− 1

2
β5, and β3 = 9 and β4 = 10 are inflating its estimate. Notice

β̂8 = 9.94 ≈ 1
2
β3 + 1

2
β4 = 1

2
9 + 1

2
10 = 9.5. Forward regression does not recover, and

continues to select false effects. Stepwise only selected factors x9 and x8. Ideally, once

factor x9 is chosen and the sum of squares are adjusted for the most dominant factor,

the previously suppressed variable x4 would show its effect. However, the presence of

noise and the aliasing chains prevent this.
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Table 12. Forward Regression Results on Table 11 with Parameter Estimates

Step β9 β8 β1 β5 R2 R2
adj

1 -14.68 0.570 0.498
2 -14.68 9.94 0.831 0.763
3 -14.68 13.04 -6.19 0.907 0.837
4 -19.28 19.16 -9.26 9.18 1.000 1.000

All-subsets regression in Table 13, on the other hand, correctly identifies the cor-

rect three-factor model with x3, x4, and x9. The best four-factor model though does

not contain any of these factors. Recommendations are difficult in this case because

different models seemingly explain the data well, but they do not share any factors in

common. The experimenter would have to choose which factors to study in follow-up

experiments. x9 is on obvious choice, but seven other factors appeared at some point

in the analysis. A conservative approach would be eliminating the six factors that

never appeared in any of methods.

Table 13. All-Subsets Results on Table 11

Number Model Terms R2 AICc
1 x9 0.5699 75.4434
2 x8,x9 0.8309 77.3087
3 x3,x4,x9 0.9994 51.4485
4 x1,x5,x6,x13 0.9999 88.1677

3.4.1.3 Example 3: Model Indiscrimination.

Supersaturated designs cannot always discriminate models, even if the design is

E(s2)-optimal and the model is sparse. For this example, we used our 14 factor, 8

run E(s2)-optimal design and generated responses with the equation y = −20x1 +

20x5 + 20x8 + ε, ε ∼ N(0, I8). First, notice the pattern in the contrast vector C in

Table 14. All contrasts are either close to ±80 or 0. This confuses the Half-Normal

Plot in Figure 2, so no factors appear important. Stepwise also failed to identify any
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active factors. This is peculiar because the effects are significantly larger than the

noise.

Table 14. Model Indiscriminate Supersaturated Design

Design Factors with y = −20x1 + 20x5 + 20x8 + ε, ε ∼ N(0, I8)
Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 y

1 + + + + + + + + + + + + + + 18.629
2 − + − − − + + − − − + − + + -20.870
3 + − + − − − + + − − − + − + -20.720
4 + + − + − − − + + − − − + − -21.328
5 − + + − + − − − + + − − − + 20.834
6 − − + + − + − + − + + − − − 19.929
7 − − − + + − + − + − + + − − 20.482
8 + − − − + + − − − + − + + − -20.420

C -84.2 -2.0 80.8 78.9 82.5 -2.0 -1.5 -3.5 80.7 81.4 79.8 -0.6 -84.5 -0.8
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Figure 3. Half Normal Plot of Main-Effect Estimates for the Design in Table 14

The results for forward regression are in Table 15 and only one true active factor

was detected, x5. Factor x13 was chosen first because it had the largest contrast in

absolute value. The remaining factors, x11 and x12 were selected because they are

aliased with real effects. Also note that the final model has a low R2
adj compared

to the high values we have seen. Results from all-subsets regression in Table 16 are

also troublesome. The best three-factor model identifies x3, x4, and x8 as active

factors. Although the four-factor model identifies the true factors, we expect with

only three nonzero parameters, all-subsets regression would identify the correct three-

factor model. Investigation showed the second best three-factor model was the true

underlying model with x1, x5, and x9. Additionally, with and R2 = 0.9995 and
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AICc = 49.3771, the two best models are essentially identical. To examine this

further, suppose now the response vector is noiseless (i.e. y = −20x1 + 20x5 + 20x8).

So,

y′ = (20 −20 −20 −20 20 20 20 −20).

Table 15. Forward Regression Results on Table 14 with Parameter Estimates

Step β13 β5 β11 β12 R2 R2
adj

1 -10.56 0.268 0.156
2 -10.56 10.31 0.523 0.333
3 -10.56 10.31 9.98 0.762 0.584
4 -10.56 13.80 9.98 -6.98 0.850 0.649

Table 16. All-Subsets Results on Table 14

Number Model Terms R2 AICc
1 x13 0.2679 80.4661
2 x5,x13 0.5232 86.3683
3 x3,x4,x8 0.9996 49.1094
4 x1,x5,x8,x13 0.9999 91.8652

Using all-subsets regression, we can find two different models that fit the data

exactly :

1. y = −20x1 + 20x5 + 20x8

2. y = 20x3 + 20x4 − 20x8

If we cannot differentiate between two models in the noiseless case, we certainly cannot

expect to differentiate between them in the presence of noise. This occurs because

the factors in the above models are linearly dependent. If we construct a matrix

using the factor columns of the competing models, we get X∗ = [x1,x3,x4,x5,x8],

which has a rank of 4. X∗ has 5 columns, so it is rank deficient and X∗β = y

has multiple least squares solutions. In this case, β̂1

′
= (−20 0 0 20 20) and
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β̂2

′
= (0 20 20 0 −20). This phenomenon motivates the design criterion called

resolution-rank from Deng et al. (1999), although a discussion of this criterion is

beyond the scope of this paper. It is an interesting area for future research because in

this case, no method can correctly find the active factors, although an experimenter

could analyze the six terms in the competing models in later experiments. Also, in

a real experiment, the presence of noise would likely make it impossible to detect if

two models could generate the same noiseless response vector.

3.4.1.4 Example 4: Effect Sparsity Does Not Hold.

For our final example, we will examine what happens if the assumption of effect

sparsity does not hold. Specifically, we generated responses with a six factor model,

y = 15x1 + 8x3 + 10x5 + 14x9 + 12x12 + 11x14ε, ε ∼ N(0, I8). While this is less than

half of the total number of factors, the number of active factors is greater the n/2 = 4

factors we are trying to identify. At best, an experimenter can hope to detect the

most active factors and carry them into the next phase of experimentation.

Table 17. Supersaturated Design with Too Many Active Factors

Design Factors with y = 15x1 + 8x3 + 10x5 + 14x9 + 12x12 + 11x14ε, ε ∼ N(0, I8)
Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 y

1 + + + + + + + + + + + + + + 70.598
2 − + − − − + + − − − + − + + -48.215
3 + − + − − − + + − − − + − + 22.313
4 + + − + − − − + + − − − + − -10.052
5 − + + − + − − − + + − − − + 17.304
6 − − + + − + − + − + + − − − -53.190
7 − − − + + − + − + − + + − − 1.700
8 + − − − + + − − − + − + + − 4.040

C 169.3 54.8 109.6 13.6 182.8 -58.0 88.3 54.8 154.6 73.0 -62.7 192.8 28.2 119.5

With six active factors, many models will likely explain the data well. Addition-

ally, the design tangles the many real effects in such a way that the contrasts in Table

17 look like noise because all contrasts are relatively large compared to the other

examples. The Half-Normal Plot in Figure 4 therefore fails to separate any active

factors from inactive. In Table 18, forward regression chooses a real effect in Step 1,

x12, but then falsely selects x2 in Step 2 because it is aliased with true factors x9,
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x12, and x14. A correct factor is chosen in Step 3, but the final model from forward

regression only identified 2 out of 6 real effects. Stepwise did not do any better and

only chose factors x12, x2, and x3.
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Figure 4. Half Normal Plot of Main-Effect Estimates for the Design in Table 17

Table 18. Forward Regression Results on Table 17 with Parameter Estimates

Step β12 β2 β3 β7 R2 R2
adj

1 24.10 0.420 0.324
2 36.70 25.20 0.765 0.671
3 36.70 25.20 13.69 0.901 0.826
4 44.01 28.85 13.69 -10.97 0.959 0.904

All-subsets regression found similar results to forward and stepwise regression for

models with 1-3 factors. The best four-factor model in Table 19 identified x5,x7,x8,

and x11 as active factors, but only x5 has an effect. This example suggests that if effect

sparsity does not hold, supersaturated designs are not a useful screening method.

Table 19. All-Subsets Results on Table 17

Number Model Terms R2 AICc
1 x12 0.4204 88.1878
2 x2,x12 0.7650 90.2988
3 x2,x3,x12 0.9007 102.071
4 x5,x7,x8,x11 0.9606 150.670
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3.4.2 Summary of Difficulties.

The assumption of a linear model makes subset regression techniques a starting

point for the analysis of supersaturated designs, but our examples show that these

methods have multiple failure points. Granted, we chose specific models that would

fail to warn what can happen. Nevertheless, the examples show how challenging

analysis can be. They show it is risky to analyze factors individually, either by

contrasts or visually in a Half-Normal Plot, because active effects can be hidden

or inactive factors may appear important. Also, forward and stepwise regression

are affected if a large false effect is selected, as in Example 1. Moreover, R2 and

R2
adj do not differentiate competing models well, and no analysis method can resolve

Example 3 in which two different parameter vectors generate the same response data.

The challenges likely worsen with more noise in the responses.

Whatever method is used, the practitioner is often worried about Type I and Type

II errors. Type I errors, also known as false positives, occur when an inactive factor

is declared active. Type II errors, or false negatives, occur when a active factor is not

found. In a screening experiment, it’s more important to avoid Type II errors than

Type I because future runs can further separate active and inactive factors, but they

won’t be able to detect a factor if it’s not tested. We stress that, in many cases, Type

I and Type II errors occur in tandem. In Example 1, a Type I error (selecting a false

effect, x4) caused Type II errors because the active factors lost their effect estimates

to a inactive factor. Thus, if the Type I error is reduced from the first step, we will

likely decrease the risk of Type II error.

3.4.3 Overview of Analysis Methods.

Many researchers have investigated the supersaturated design analysis problem,

and a number of novel analysis methods, both Bayesian and frequentist, have been
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introduced in the literature. Westfall et al. (1998) proposed a resampling procedure

and adjusted p-values with forward regression to control Type I errors, Beattie et al.

(2002) applied a two-stage Bayesian analysis, Li and Lin (2002) used an iterative

ridge regression to identify active factors based on a penalized least squares, Yamada

(2004) analyzed stepwise Type II errors, and Zhang et al. (2006) introduced a par-

tial least squares approach which combined elements of principle component analysis

and canonical correlation with multiple regression. More recently, Georgiou (2008)

combined singular value decomposition (SVD), principle component analysis, and re-

gression to analyze supersaturated designs, Scinto et al. (2011) applied a Bayesian

Variable Assessment to find active factors, and Edwards and Mee (2011) suggested

a global model test to identity potential models. For a comprehensive review of

analytical techniques with technical details, please see Gupta and Kohli (2008).

3.4.4 New Analysis Methods: Variants of Forward Regression.

As shown in our examples, standard regression techniques generally do not work

well for the analysis of supersaturated designs, and techniques that work better are

difficult for practitioners to implement. Many can be hard to understand and pro-

gram because they require tuning parameters or knowledge of multivariate analysis

methods. Finding an intermediary analysis method is desirable for practitioners. Our

goal in this section is to develop useful analysis methods using convenient, familiar

regression techniques that have nice properties. Lu and Wu (2004) had the same

goal, although their staged-dimensionality reduction was geared towards designs con-

structed from an orthogonal base. The methods we propose can be applied to any

design.

Practitioners tend to rely on familiar regression techniques, and while all-subsets

regression is the benchmark technique for supersaturated designs, it is computation-
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ally expensive. We need a faster way to search the model space for supersaturated

designs, particulary for large designs. Standard forward regression is an option, but

as we’ve seen, the presence of a false effect causes forward regression to deviate from

the correct model. For example, in Example 1, the inflated inactive factor x4 was

flagged as active and forward regression could not correct itself. Had we known, a

priori, that β̂4 was a false positive, we could have omitted it from the model and used

forward regression to find the correct factors x11,x9,x8, and x1 in succession. But

without prior knowledge about the design, we would not know which factor to omit.

Therefore, we suggest fitting a model with forward regression in s steps to identify

a set of potential model factors {xi1 ,xi2 , . . . ,xis}. Since any one of the s variables

chosen may be a false effect, ignore each factor and restart forward regression on all

other k − 1 factors. One false positive can invalidate forward regression, and fitting

a model without that factor can preclude this from happening. Removing a variable

will make sure it is not falsely selected at any point and reduce the risk of Type I

errors. We refer to the procedure as forward regression with omission, and it will

perform forward regression s + 1 total times. The experimenter can then compare

the models based on the AICc criterion and choose the best factors for additional

experiments. The choice of s is up to user, though we suggest an integer between n/3

and n/2.

If the experimenter would rather automate the variable selection, we suggest the

modified AIC (mAIC) from Phoa et al. (2009) as the stopping rule. The traditional

AIC and AICc tend to overfit supersaturated designs if automated. The mAIC

criterion, however, enforces a stiff penalty on model complexity. It is defined as

mAIC = n log(RSS/n) + 2p2, (3.8)
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where n is the number of runs, RSS =
∑n

i=1(yi − ŷi)2 is the residual sum of squares,

and p is the number of terms in the model. Forward regression with omission would

then be carried out on the number of factors selected with mAIC. When models are

small, this method gives only a portion of the models found with all-subsets regression.

For large designs, all-subsets is infeasible and forward regression with omission is a

straightforward way to create many models using forward regression.

3.5 Simulation Studies

In this section, we compare the performance of forward regression with omission

to other analysis methods in the literature. The two most popular supersaturated

designs used for comparing analysis techniques are Lin’s (1993) half-fraction of a 24

factor, 28 run design from Williams (1968), and Lin’s (1995a) 138 factor, 24 run

design which was used to study AIDS incidence rates.

3.5.1 Williams’s Rubber Data.

The original Williams (1968) design was a Plackett-Burman type design that

studied 24 factors of a rubber making process in 28 runs. The full design also appears

in Box and Draper (1987). Lin (1993) used his half-fraction construction method to

create a 28 factor, 14 run supersaturated design of the original matrix to see if he

could draw the same conclusions as Williams in half the runs. The design, shown in

Table 20, has since become the de facto supersaturated design to compare analysis

methods. The matrix, however, contained an error; the columns for factors 13 and

16 were identical. Further, an extensive study of the original design by Sundberg

(2008) revealed an outlier in the responses which likely caused misleading results

when comparing methods on the raw data.
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Table 20. Half Fraction of Williams’s (1968) Data as reported in Lin (1993), without
Factor 16

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10x11x12x13x14x15x17x18x19x20x21x22x23x24 y
1 + + + − − − + + + + + − + − − + − − + − − − + 133
2 + − − − − − + + + − − − + + + − + − − + + − − 62
3 + + − + + − − − − + − + + + + + − − − − + + − 45
4 + + − + − + − − − + + − + − + − + + + − − − − 52
5 − − + + + + − + + − − − + − + + − − + − + + + 56
6 − − + + + + + − + + + − − + + + + + + + + − − 47
7 − − − − + − − + − + − + + + − + + + + + − − + 88
8 − + + − − + − + − + − − − − − − − + − + + + − 193
9 − − − − − + + − − − + + − − + + + − − − − + + 32
10 + + + + − + + + − − − + − + + + − + − + − − + 53
11 − + − + + − − + + − + − − + − − + + − − − + + 276
12 + − − − + + + − + + + + + − − − − + − + + + + 145
13 + + + + + − + − + − − + − − − − + − + + − + − 130
14 − − + − − − − − − − + + − + − − − − + − + − − 127

Nevertheless, the design matrix has appeared in many simulation studies, whereby

researchers chose a truth model, generated response data with random noise, and

searched for the truth model with their proposed analysis method. Unfortunately,

a problem occurred when different authors removed one of the duplicate columns in

Lin’s half fraction. To create the 23 factor, 14 run supersaturated design for the

simulation studies, some authors removed factor 16 and kept the labeling of the other

factors the same, as in Abraham et al. (1999), Li and Lin (2003), Lu and Wu (2004),

Zhang et al. (2006), Li et al. (2010), Scinto et al. (2011). Others (Beattie et al. (2002)

and Phoa et al. (2009)) removed factor 13 and relabeled the remaining factors. As a

result, intended comparisons of some analysis techniques were inadvertently run on

different models.

In the twelve models below, the * indicates cases where analysis methods were

mistakenly compared. Cases 6, 8, and 9 were intended to be the same model: y =

−15x1 + 12x5 − 8x9 + 6x13 − 2x17 + ε. Beattie et al. (2002) originally proposed the

model, and they applied it to the design matrix without factor 13 and all other factors

relabeled. Li and Lin (2003) intended to study the same model, but they applied it to

the design matrix without factor 16 and no relabeling. Therefore, x17 in Beattie et al.
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was x18 in Li and Lin. In Case 9, Lu and Wu (2004) compared their analysis method

to Beattie et al. but listed the coefficient of x17 as −12 instead of −2. Here, we correct

the models to allow direct comparisons with our methods. All models are written in

terms of the matrix in Table 20 with factor 16 deleted. The remaining factor labels

are not changed. The simulation models below are ordered chronologically by when

they appeared in the literature. For all models, ε ∼ N(0, In).

• Case 1: y = 5x2 + 10x7 + 20x13 + ε

• Case 2: y = 14x2 + 20x7 + 20x13 + ε

• Case 3: y = 20x2 + 20x7 + 20x13 + ε

• Case 4: y = 10x1 + ε

• Case 5: y = −15x1 + 8x5 − 6x9 + 3x5x9 + ε

• Case 6*: y = −15x1 + 12x5 − 8x9 + 6x14 − 2x18 + ε

• Case 7: y = −15x1 + 8x5 − 2x9 + ε

• Case 8*: y = −15x1 + 12x5 − 8x9 + 6x13 − 2x17 + ε

• Case 9*: y = −15x1 + 12x5 − 8x9 + 6x13 − 12x17 + ε

• Case 10: y = −15x2 + 12x5 − 8x13 + 6x14 − 2x17 + ε

• Case 11: y = −15x2 + 8x5 − 6x13 + 3x5x13 + ε

• Case 12: y = −15x2 + 8x5 − 2x13 + ε

Forward regression with omission was applied with both the automatic stopping

rule using mAIC (also referred to as F. Omission v1) and a defined stopping rule

with s = 5 (F. Omission v2). We simulated each model 1000 times and the results

49



are summarized in Tables 21 and 22, along with previous results from other authors.

Note that not all authors ran their analysis methods on the same models, nor did

they all use the same criteria to compare their results. True Model Identification

Rate, or True Model IR % in the tables, is how often the model was detected exactly,

with no Type I errors. For our two methods, True Model IR only applies for F.

Omission v1 because F. Omission v2 searches for the 5 most important factors and is

not intended to find an exact model but rather a model with 5 factors. Smallest Effect

Identification Rate (Smallest Effect IR % in the tables) was used by some authors to

indicate how often their analysis method detected the smallest effect in the model.

The metric is similar to the Active Factor Identification Rate (Active Factor IR % in

the tables), which signifies how often the analysis methods detected all of the active

factors. While this does allow for Type I errors, we find this to be the most useful

metric to compare screening methods because inactive factors can be removed with

later experiments. For our analysis methods, Smallest Effect IR and Active Factor IR

were identical, so if we missed a factor, it was the one with the smallest effect. This

is not necessarily the case, so the two metrics are separated in the tables for clarity

and match each author’s original classification.

As in Scinto et al. (2011), the search for any model with an interaction term was

deemed successful as long as the selection method identified the active factors involved

in the main effects and interaction term. We did not search for specific interaction

terms, as this would require the inclusion of
(

24
2

)
= 276 model terms. The interactions

are meant to complicate the noise structure. Also, Scinto et al. analyzed models with

two different tuning parameters for their Bayesian Variable Assessment method, but

we are only reporting their best results in Tables 21 and 22.

In Cases 1-3, forward regression with omission detected the active factors every

time. The best models found with all-subsets, as reported by Abraham et al., also
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Table 21. Comparison of Results on the William’s Design Matrix

True Model True Model IR % Smallest Effect IR % Active Factor IR %
1. y = 5x2 + 10x7 + 20x13 + ε
Forward k = 5 in Abraham et al. 100
All-Subsets k = 5 in Abraham et al. 100
F. Omission v1 67.4 100
F. Omission v2 100
2. y = 14x2 + 20x7 + 20x13 + ε
Forward k = 5 in Abraham et al. 0
All-Subsets k = 5 in Abraham et al. 100
F. Omission v1 23.2 100
F. Omission v2 100
3. y = 20x2 + 20x7 + 20x13 + ε
Forward k = 5 in Abraham et al. 0
All-Subsets k = 5 in Abraham et al. 100
F. Omission v1 26 100
F. Omission v2 100
4. y = 10x1 + ε
Beattie et al. 61 98
Li and Lin 75.6 100
Lu and Wu 53 100
Zhang et al. 61 100
Phoa et al. 99.4 100
Li et al. 89.2 100
Scinto et al. (threshold = 0.50) 94 100
Forward k = 5 100
All-Subsets k = 5 100
F. Omission v1 0 100
F. Omission v2 100
5. y = −15x1 + 8x5 − 6x9 + 3x5x9 + ε
Beattie et al. 46.5 81-97
Lu and Wu 42 100
Li et al. 66.3 96.1
Scinto et al. (threshold = 0.50) 98 100
Forward k = 5 99.4
All-Subsets k = 5 98.6
F. Omission v1 83.8 99.9
F. Omission v2 99.4
6*. y = −15x1 + 12x5 − 8x9 + 6x14 − 2x18 + ε
Beattie et al. 40.7 75-94
Phoa et al. 79.1 91.2
Forward k = 5 100
All-Subsets k = 5 98.2
F. Omission v1 89.1 93.5
F. Omission v2 100
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Table 22. Comparison of Results on the William’s Design Matrix, Continued

True Model True Model IR % Smallest Effect IR % Active Factor IR %
7. y = −15x1 + 8x5 − 2x9 + ε
Li and Lin 74.7 98.5
Zhang et al. 76.4 97.7
Phoa et al. 84.4 85.3
Li et al. 80.2 99.1
Forward k = 5 99.9
All-Subsets k = 5 97.5
F. Omission v1 76.2 99
F. Omission v2 99.9
8*. y = −15x1 + 12x5 − 8x9 + 6x13 − 2x17 + ε
Li and Lin 69.7 99.4
Zhang et al. 73.6 95
Li et al. 85.2 99.2
Scinto et al. (threshold = 0.35) 92 97
Forward k = 5 98
All-Subsets k = 5 99.7
F. Omission v1 85.6 98.2
F. Omission v2 98
9*. y = −15x1 + 12x5 − 8x9 + 6x13 − 12x17 + ε
Lu and Wu 53 100
Forward k = 5 96.8
All-Subsets k = 5 100
F. Omission v1 53.8 100
F. Omission v2 96.8
10. y = −15x2 + 12x5 − 8x13 + 6x14 − 2x17 + ε
Li et al. 86 99.7
Forward k = 5 100
All-Subsets k = 5 100
F. Omission v1 85.6 95.4
F. Omission v2 100
11. y = −15x2 + 8x5 − 6x13 + 3x5x13 + ε
Li et al. 72.1 98.5
Forward k = 5 100
All-Subsets k = 5 100
F. Omission v1 19.6 99.4
F. Omission v2 100
12. y = −15x2 + 8x5 − 2x13 + ε
Li et al. 86.9 99.8
Forward k = 5 100
All-Subsets k = 5 99.3
F. Omission v1 68.4 99
F. Omission v2 100

52



detected the three active factors, though our omission technique required fewer fitted

models. Also, for Cases 2 and 3, standard forward regression failed to detect any of

the true factors because they inflated the value of β̂1. The aliasing structure of the

design matrix shows that every factor is aliased with all factors with a ±3
7

or ±1
7

correlation. The aliasing chain for x1 includes 3
7
β2 + 3

7
β7 + 3

7
β13, so the active factor

create an effect in β̂1 greater than any true factor effect (refer to Example 1 in §3.4.1.)

In Case 4, v1 and v2 detected the active factor every time. In Case 5, both found

the factors involved in the model more than 99% of the time. In 6 and 7, forward

regression with omission v2 performed better than any previously published results,

as it found the active factors 100% and 99.9% of the time, respectively. For Case

8, both omission techniques indified the active factors more than 98% of the time,

though this is lower than results from Li et al. (2010). In the remaining cases, 9-12,

at least one version of forward regression with omission detected the active factors

every time. Results show that our method performs favorably to all current methods

with respect to this design matrix. Additionally, our methods are easy to implement

and do not require tuning parameters.

Notice that Tables 21 and 22 also include simulation results from basic forward

regression in 5 steps (based on the AICc criterion) and all-subsets regression for

models with 5 factors. We ran these methods on Cases 4-12 to test the adequacy of

the models for comparing new analysis methods. An oversight is that basic regression

methods outperform many of the novel methods proposed in the literature. This is

not due to inconsequential analysis methods; rather, the models themselves do not

present the analytical challenges outlined in §3.4.1. In short, the models are not

interesting in the context of comparing analysis methods for supersaturated design,

with the exceptions of Cases 2 and 3. In 2 and 3, forward regression selected a false

effect first and never recovered. Our method was able to correct this. Other methods
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may detect the true factors as well, but we did not perform the other analysis methods

on models not reported by the original authors.

3.5.2 Lin’s AIDS Incidence Design.

In light of our concerns with the simulation models on the Williams matrix, we

tested forward regression with omission on a different, but still well-known, super-

saturated design. Lin (1995a) analyzed a 138 factor, 24 run two-level supersaturated

design to identify factors affecting the AIDS incidence rate per 100,000 people. We

defer to Lin, Mee (2009), and Edwards and Mee (2011) for discussions about the

analysis of the raw data. Here, we focus on a simulation study using the design ma-

trix. The first 23 factors form a Hadamard matrix, shown in Table 23. As stated

in Mee (2009), the remaining factors, x24 − x138, were generated from the following

two-factor interactions:

• x24 − x45: x22+i = x1 ∗ xi, i = 2, . . . , 23

• x46 − x66: x43+i = x2 ∗ xi, i = 3, . . . , 23

• x67 − x86: x63+i = x3 ∗ xi, i = 4, . . . , 23

• x87 − x105: x82+i = x4 ∗ xi, i = 5, . . . , 23

• x106 − x123: x100+i = x5 ∗ xi, i = 6, . . . , 23

• x124 − x138: x117+i = x6 ∗ xi, i = 7, . . . , 21

For this simulation, we built five truth models: two have 8 active factors, two

have 10, and one has 12. For each model, the location of active factors was chosen

randomly and each active factor was assigned a random integer β value between 3 and

50. All other β values were set to 0. We wanted models with different magnitudes
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Table 23. First 23 Factors of Lin’s (1995) AIDS Incidence Design, as reported by Mee
(2009)

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 y ln(y)
1 + + + + + − + − + + − − + + − − + − + − − − − 22.61 3.12
2 + + + + − + − + + − − + + − − + − + − − − − + 14.26 2.66
3 + + + − + − + + − − + + − − + − + − − − − + + 58.42 4.07
4 + + − + − + + − − + + − − + − + − − − − + + + 24.59 3.20
5 + − + − + + − − + + − − + − + − − − − + + + + 10.28 2.33
6 − + − + + − − + + − − + − + − − − − + + + + + 188.46 5.24
7 + − + + − − + + − − + − + − − − − + + + + + − 22.68 3.12
8 − + + − − + + − − + − + − − − − + + + + + − + 22.90 3.13
9 + + − − + + − − + − + − − − − + + + + + − + − 52.04 3.95
10 + − − + + − − + − + − − − − + + + + + − + − + 381.61 5.94
11 − − + + − − + − + − − − − + + + + + − + − + + 16.22 2.79
12 − + + − − + − + − − − − + + + + + − + − + + − 108.59 4.69
13 + + − − + − + − − − − + + + + + − + − + + − − 98.05 4.59
14 + − − + − + − − − − + + + + + − + − + + − − + 53.13 3.97
15 − − + − + − − − − + + + + + − + − + + − − + + 83.41 4.42
16 − + − + − − − − + + + + + − + − + + − − + + − 13.59 2.61
17 + − + − − − − + + + + + − + − + + − − + + − − 242.96 5.49
18 − + − − − − + + + + + − + − + + − − + + − − + 663.93 6.50
19 + − − − − + + + + + − + − + + − − + + − − + − 57.95 4.06
20 − − − − + + + + + − + − + + − − + + − − + − + 177.49 5.18
21 − − − + + + + + − + − + + − − + + − − + − + − 40.22 3.69
22 − − + + + + + − + − + + − − + + − − + − + − − 52.23 3.96
23 − + + + + + − + − + + − − + + − − + − + − − − 53.50 3.98
24 − − − − − − − − − − − − − − − − − − − − − − − 2463.24 7.81

of active factors, and at a noise level of σ = 1, we have a random spread of small,

medium, and large active effects. The five simulation models are:

• Case 1: y = 4x7 + 20x27 + 43x57 + 29x65 + 49x70 + 38x91 + 28x112 + 49x136 + ε

• Case 2: y = 31x27 + 42x28 + 24x96 + 27x98 + 19x102 + 8x108 + 15x110 + 36x121 +ε

• Case 3: y = 10x5 + 17x49 + 15x74 + 23x79 + 11x81 + 50x90 + 38x92 + 24x112 +

18x132 + 7x133 + ε

• Case 4: y = 45x20 + 11x34 + 5x47 + 8x53 + 35x95 + 25x99 + 41x106 + 39x107 +

10x126 + 47x130 + ε

• Case 5: y = 31x18 + 33x25 + 35x41 + 16x53 + 18x58 + 48x64 + 26x65 + 21x75 +

40x89 + 11x95 + 28x102 + 13x114 + ε

We generated response data with each model using ε ∼ N(0, In). In this design,

the factor-to-run ratio is large, much larger than the guidelines proposed by Marley
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and Woods (2010). They recommend the factor-to-run ratio should be less than 2.

Because our ratio is larger, we searched for the maximum recommended active factors,

n/2 = 12. Note with a design this size, all-subsets regression is computationally

impractical. Edwards and Mee (2011) performed all-subsets regression for up to 6

factors on this design, and it took over 7 hours to run. The estimated all-subsets

regression for 7 factors would take days, as it would require
∑7

i=1

(
138
i

)
≈ 117 × 109

fitted models.

Table 24. Simulation Results on Lin Matrix

Step: 1 2 3 4 5 6 7 8 9 10 11 12 R2
adj AIC

1. y = 4x7 + 20x27 + 43x57 + 29x65 + 49x70 + 38x91 + 28x112 + 49x136 + ε
Forward 70 91 112 136 57 65 27 7 130 88 19 121 1.000 -38.884 X

Omission 70 91 112 136 57 65 27 7 130 88 19 121 1.000 -38.884 X
2. y = 31x27 + 42x28 + 24x96 + 27x98 + 19x102 + 8x108 + 15x110 + 36x121 + ε
Forward 28 98 85 96 11 121 41 51 27 108 110 59 1.000 -12.781

Omission 28 98 27 102 121 96 110 108 45 26 14 132 1.000 -51.755 X
3. y = 10x5 + 17x49 + 15x74 + 23x79 + 11x81 + 50x90 + 38x92 + 24x112 + 18x132 + 7x133 + ε
Forward 90 112 92 79 132 49 74 4 135 56 5 122 0.998 69.501

Omission 90 112 92 79 132 49 74 81 5 133 69 33 1.000 -18.360 X
4. y = 45x20 + 11x34 + 5x47 + 8x53 + 35x95 + 25x99 + 41x106 + 39x107 + 10x126 + 47x130 + ε
Forward 130 106 95 103 99 10 88 111 110 24 5 6 0.997 95.498

Omission 130 61 25 41 76 108 33 99 17 4 53 84 0.998 82.434
5. y = 31x18 + 33x25 + 35x41 + 16x53 + 18x58 + 48x64 + 26x65 + 21x75 + 40x89 + 11x95 + 28x102 + 13x114 + ε
Forward 41 82 102 104 119 95 4 7 11 73 138 87 0.995 103.567

Omission 41 82 102 119 122 5 129 58 55 73 84 63 0.998 85.395

Analysis results from forward regression and forward regression with omission

are compared in Table 24, which details what factors were selected at each step. A

Xsignifies that every active factor was identified. For the first model, regular forward

regression found all 8 active factors before choosing 4 noise factors to fit the desired

12-factor model. Forward regression with omission generated s + 1 = 13 models,

one of which was the original forward regression model. This had the lowest AIC

value, so the same model was detected. For Case 2 with 8 active factors, forward

regression detects 2 active factors, x28 and x98, before selecting a false effect, x85.

This selection alters the path of forward selection, and although it detected more

true factors, it fails to select all 8. Our method, however, fits a model without each

factor identified with forward regression in case it was a false effect. When a model
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is fit without x85, forward regression chooses another active factor, x27, in step 3. It

then continues to select the remaining 5 active factors. The AIC value of the model

improved from -12.781 to -51.755, though each model had an R2
adj = 1.000. A similar

situation happens in Case 3 with the 10 factor model. Forward regression detected

a false effect in step 8, but once that factor was removed, our method found all 10

active factors. The AIC dropped from 69.501 to -18.360. The R2
adj values were again

nearly identical, further indicating the criterion’s inability to differentiate models on

supersaturated designs.

Cases 4 and 5 highlight the difficulty of analyzing supersaturated designs with a

large factor-to-run ratio. In both cases, our method fit better models in terms of AIC

and R2
adj, but detected less active factors. The aliasing structure of the design has

active and inactive factors tangled together in such a way that many models will fit

the data well, at least with respect to standard regression criteria. However, when

all-subsets is computationally infeasible, forward regression with omission provides

more potential models than forward regression alone, and in some cases, it accurately

identifies all active factors.

3.6 Conclusions & Discussion

3.6.1 Conclusions.

Although research on supersaturated designs is extensive, their application is less

widespread. In this paper, we presented basic supersaturated design concepts, showed

how to find or construct designs, reviewed common analytical challenges, and intro-

duced easy-to-use analysis methods. Our intent is to better familiarize practitioners

with supersaturated designs. We clarified the differences between main-effect and

model-effect supersaturated designs and walked through examples of four common

analysis pitfalls: inflated inactive factors, hidden active factors, model indiscrimina-
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tion, and wrong assumptions. We stress that our examples should not serve as a

deterrent to experimenters considering supersaturated designs, but rather serve as an

impetus for an in-depth look at the analysis of such designs. It is important to be

honest about their shortcomings because analysis is not trivial. Many methods are

available to analyze the designs, yet no method is consistently better than all the

others. Basic regression methods are viable options, but be aware there are times

when a slight variation of these methods, i.e. our proposed forward regression with

omission, is more useful.

Moreover, we compiled the most comprehensive summary of analysis techniques on

simulation models using Lin’s half-fraction of Williams design matrix. Inconsistencies

in the literature caused by the duplicate column have been resolved. We provided an

updated and corrected table of simulation results, and ultimately concluded that we

need a new gold standard to compare analysis methods. Researchers would benefit

from simulation models that actually present problems for basic techniques. We also

presented a new simulation study using the 138 factor, 24 run Lin matrix, and showed

that forward regression with omission is a useful method to identify active factors,

especially when all-subsets regression is infeasible.

3.6.2 Discussion.

With the documented concerns of supersaturated designs, a practitioner might

inquire if it ever makes sense to use a supersaturated design. In reality, using the

designs may be unavoidable. To assume they will never be used is naive because

when screening problems have more factors than runs, it’s important to find a way to

statistically analyze the data. A statistician can apply the different analysis methods

presented in this paper and test the robustness of the selected active factors. What-

ever method is implemented, follow-up runs are required. A potential area for future
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work is how to strategically plan the follow-up runs to a supersaturated experiment.

Another interesting area for future work is a more direct connection between construc-

tion and analysis methods because construction methods “appear to be unrelated to

the way in which the data are analyzed”(Gilmour, 2006). While researchers produce

new methodologies and tools to alleviate these concerns, we encourage practitioners

to consider using supersaturated designs but to also be aware of their risks.
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IV. Augmenting Supersaturated Designs with Bayesian

D-Optimality

A methodology is developed to add runs to existing supersaturated designs. The

technique uses information from the analysis of the initial experiment to choose the

best possible follow-up runs. After analysis of the initial data, factors are classified

into one of three groups: primary, secondary, and potential. Runs are added to maxi-

mize a Bayesian D-optimality criterion to increase the information gained about those

factors. Simulation results show the method can outperform existing supersaturated

design augmentation strategies that add runs without analyzing the initial response

variables.

4.1 Introduction

Screening designs are used in the early stages of industrial and computer exper-

iments to discover which input factors have major effects on a system’s output. A

screening experiment is intended to remove the negligible, or inactive, factors from

further experiments, allowing the investigator to focus on the important, or active,

factors. In a large set of factors, relatively few are likely to be active, a concept called

effect sparsity (Box and Meyer, 1986). Traditional screening methods for k factors,

like two-level 2k−p fractional factorial (Box et al., 2005) or Plackett-Burman designs

(Plackett and Burman, 1946), require at least k + 1 experimental runs to separate

the few active factors from the many inactive. But, when k is large or experimental

runs are prohibitively expensive, the experimenter requires alternative designs that

can screen k factors in n < k + 1 runs. Supersaturated designs (SSDs) are one such

technique.

60



SSDs were introduced by Satterthwaite (1959) and Booth and Cox (1962) but did

not receive considerable attention until Lin (1993) and Wu (1993) renewed interest

in the field, which continues today. The focus of an SSD is on identifying the active

main effects in a linear model. Consider an experiment with k factors and n runs.

The underlying linear main-effect model is represented as:

y = β01 + β1x1 + · · ·+ βkxk + ε = Xβ + ε; (4.1)

where y is the response vector, β0, . . . , βk are the p = k+1 unknown model parameters,

and ε ∼ N(0, σ2In) is the error term. The model matrix X equals (1|S), where 1

is an n × 1 column of 1’s and S = (x1| . . . |xk) is the design matrix. The rows of S

contain the k factor level settings for the n experimental runs. For clarity, we adopt

the notation in Gupta et al. (2010) and let SSD(n, k) = S represent an SSD with n

runs and k factors.

An SSD(n, k) with model matrix X is typically constructed to optimize a crite-

rion that minimizes the bias of the parameter estimates. For two-level designs, in

which factor levels are coded as ±1, the most popular criterion is E(s2). Denote the

(i, j)th element of X′X as sij. E(s2) is defined as E(s2) =
∑

i<j s
2
ij/(k(k − 1)/2). A

small E(s2) implies the average correlations between factor columns are as small as

possible. (See Nguyen (1996), Bulutoglu and Cheng (2004), Suen and Das (2010),

and references therein for more on E(s2)-optimal designs.) Another popular con-

struction technique is based on the Bayesian D-optimality criterion by Jones et al.

(2008), discussed in Sections 4.2 and 4.3. An overview of other design criteria for

SSDs, including criteria for designs with more than two levels, can be found in Lin

(2003).

Regardless of the construction method, the analysis of SSDs is rather challenging.

Since n < k + 1, X′X is singular and the ordinary least squares estimates, b =
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(X′X)−1X′y, cannot be calculated. Due to effect sparsity, most of the βi terms

in (4.1) are assumed to be zero, but choosing which factors to remove from the

model is difficult. The most common analytical challenges associated with SSDs

were documented in Gutman et al. (2013b), and we refer the reader to Gupta and

Kohli (2008) and Georgiou (2012) for reviews of proposed analysis methods. Note,

however, that no method is infallible. There is a tradeoff between the economy of

a design and the information gained from the experiment. The experimenter risks

classifying an inactive factor as active (Type I error), or worse, classifying an active

factor as inactive (Type II error). For this reason, screening designs are not intended

to be utilized for an “all-encompassing” experiment, but rather as the first stage in a

sequence of experiments (Box, 1992). This is especially pertinent with SSDs because

the original analysis results are not always definitive, a consequence of the inability

to simultaneously estimate all main-effects.

Adding follow-up runs to a design is a useful way to clarify or confirm initial

results and guide the next phase of experimentation. The notion of sequential experi-

mentation is a well-established approach in experimental design: Box (1992) provided

general guidelines to consider, and traditional augmentation strategies like fold-over

designs and the addition of center points are described in most experimental design

textbooks (e.g. Montgomery (2009) and Wu and Hamada (2000)). However, the idea

of augmenting SSDs has only recently been explored. Consider the following.

Suppose after running an SSD(n1, k), the experimenter can afford n2 more runs to

resolve ambiguities. What is the best way to augment the original design to reduce

uncertainty and get the most information out of the final SSD(n1 + n2, k)? This is

a relatively new research area. Two papers by Gupta et al. (2010) and Gupta et al.

(2012) describe methods to add rows to two-level and s-level designs, respectively.

With Gupta et al.’s method, E(s2)-optimal designs are augmented with additional
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runs to create a new class of “extended E(s2)-optimal” designs. Suen and Das (2010)

use a similar approach to add or remove one row from an existing E(s2)-optimal design

to make a new E(s2)-optimal design. However, in the current methods, there is no

effort to analyze the initial results before adding runs. After running an SSD(n1, k),

an experimenter should have some useful information about the process. Indeed, that

is the motivation for running the experiment in the first place.

The focus of this paper is to present an alternative approach to the extended-

E(s2) augmentation technique presented in Gupta et al. (2010). Our goal is to take

the information gained from the initial design, SSD(n1, k), identify and classify factors

of interest, and prioritize the additional n2 runs to get the most information from the

final design, SSD(n1 +n2, k). Specifically, we propose an SSD augmentation strategy

using the Bayesian D-optimality criterion from DuMouchel and Jones (1994) and

Jones et al. (2008). Our approach has several benefits over current methods:

1. It uses information from the first n1 runs to strategically plan the n2 follow-up

runs;

2. It can augment any SSD built from any construction method or optimality

criterion;

3. It can add any number of runs; and

4. It uses the Coordinate-Exchange Algorithm (Meyer and Nachtsheim, 1995), a

polynomial-time algorithm.

Like Gupta et al. (2010), we assume additional runs become available after the

first experiment and that n2 is provided by a decision maker. This is inherently

different than a two-stage design where an experimenter purposefully partitions the

allotted screening budget into two parts. SSDs are used when resources are heavily
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constrained, so had all the runs been available in the screening budget from the

beginning, the experimenter would likely have chosen a design to accommodate all

runs.

The next section reviews the relevant background of three key concepts: Bayesian

D-optimality, the Coordinate-Exchange Algorithm, and algorithmic augmentation

strategies for standard designs. Section 4.3 presents our approach to augment SSDs

using information from the initial runs. Section 4.4 compares the performance of

Bayesian D-optimal augmented designs with extended E(s2)-optimal designs by high-

lighting examples where using information from the first runs leads to better recom-

mendations than adding runs to maintain E(s2)-optimality. We conclude with a

discussion in Section 4.5.

4.2 Preliminaries

4.2.1 Bayesian D-Optimality.

D-optimality is a popular design criterion for traditional designs with an assumed

n × k model matrix X with n > k. The goal of D-optimality is to reduce the

error variances of the least squared estimates, given by σ2(X′X)−1. This is accom-

plished by maximizing the determinant of X′X, denoted |X′X| (Myers et al., 2009).

Unfortunately, D-optimality is not always model-robust because the design may be

‘optimal’ to the wrong model. To reduce dependency on one model, researchers have

proposed alternative optimality criteria under the Bayesian paradigm. A Bayesian

design for a linear model is constructed to maximize the posterior information about

the model parameters, β, which are conditional on prior information. In Bayesian

design theory, the counterpart to D-optimality is Bayesian D-optimality. We refer

the reader to Chaloner and Verdinelli (1995) and Atkinson et al. (2007, Ch. 18) for

a detailed description and history of Bayesian design theory and Bayesian D-optimal
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methods. In this paper, we focus on the Bayesian D-optimality criterion as presented

in DuMouchel and Jones (1994).

Consider the linear model y = Xβ + ε. Assume ε ∼ N(0, σ2In). Let the prior

distribution of the parameters be β|σ2 ∼ N(β0, σ
2R−1), where R is a prior covariance

matrix, and the conditional distribution of y given β be y|β, σ2 ∼ N(Xβ, σ2I). The

posterior distribution for β given y is then β|y ∼ N(b, σ2(X′X + R)−1), where

b = (X′X + R)−1(X′y + Rβ0). As noted, D-optimal designs maximize |X′X| to

reduce the error variances of the parameter estimates. Similarly, Bayesian D-optimal

designs aim to reduce the error variances of the parameter estimates, but the addition

of prior information has changed the variance to Var(b) = σ2(X′X+R)−1. Therefore,

Bayesian D-optimal designs are constructed to maximize |X′X + R|.

The matrix R reflects the prior information assigned to each of the p terms in

the model matrix, X. DuMouchel and Jones (1994) incorporate prior information

and model uncertainty into the regression parameters by splitting models terms into

two sets: primary terms and potential terms. Primary terms are assumed to be

active (i.e. a nonzero βi), whereas potential terms may or may not be active. Using

this information, the p1 primary terms are given a diffuse prior distribution with

an arbitrary prior mean and prior variance tending toward infinity. The arbitrary

mean reflects no knowledge of the direction of the effect of the primary term, and

the “infinite” variance implies the effect is likely to be much different than zero. The

p2 = p−p1 potential terms, on the contrary, are not expected to have large effects and

are given a prior mean zero and finite variance σ2τ 2, where τ represents the expected

effect of a factor relative to residual standard error (DuMouchel and Jones, 1994).

The matrix, R, is consequently set to R = K/τ 2, where
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K =

 0p1×p1 0p1×p2

0p2×p1 Ip2×p2

 .

The posterior distribution for β given y is then

β|y ∼ N

[(
X′X +

K

τ 2

)−1(
X′y +

K

τ 2
β0

)
, σ2

(
X′X +

K

τ 2

)−1
]

; (4.2)

and the Bayesian D-optimal design objective function becomes |X′X + K/τ 2|. The

p1 primary terms consist of those terms assumed to be in the true model, whereas

higher-order effects make up the p2 potential terms. The methodology allows the

total number of model terms, p = p1 + p2, to be greater than the number of runs, n,

because the addition of the prior information in K/τ 2 makes the information matrix

invertible. Thus, the designs can estimate all p1 primary terms while allowing the

delectability of some of the p2 potential terms.

This method was adapted to create SSDs in Jones et al. (2008). In an SSD(n, k),

prior information is usually not available for any of the control factors, so all k are

classified as potential terms; the intercept is the only primary term. If information is

available to suggest p1 > 1 factors are active, the Bayesian D-optimality criterion can

create such a design, provided p1 < n. Incorporating this prior information makes

the technique more dynamic than a naive regularization of the information matrix.

Jones et al. set τ 2 = 5 and used the Coordinate-Exchange Algorithm to create the

designs. For two-level designs, the Coordinate-Exchange Algorithm can be summa-

rized with the following steps: Generate a uniform random number from [−1, 1] for

each xi,j in X. Then, iterate through each entry in X, replacing the random number

with the entry from {−1,+1} that results in the largest value of the objective function.

Because the resulting design is likely only locally optimal, the algorithm is repeated

many times with different random starting values for the xi,j entries. After many

66



random starts, e.g. 100, the design with the largest determinant is approximately the

Bayesian D-optimal design.

4.2.2 Augmenting Designs.

Augmenting a design with additional runs is the natural way to get more infor-

mation about the system under study. One criterion used to add runs to traditional

designs with n < k is D-optimality. Suppose after an initial experiment, the inves-

tigator wishes to add specific terms to the assumed model matrix (e.g. two-factor

interactions or quadratic effects). The model is specified a priori and runs are added

to original model matrix to create a D-optimal design for the full, updated model.

The overall goal is to maximize the information gained from the combined set. For a

step-by-step example, see Goos and Jones (2011, p. 60-65).

Let X1 be a model matrix corresponding to the first n1 runs of an experiment, and

let X2 be the additional n2 rows. To optimize the final design, we need to maximize

|X′X| of the final model matrix X, where X =

(
X1

X2

)
.

To find |X′X|, first note that

X′X =

(
X1

X2

)′(
X1

X2

)
= (X′1X

′
2)

(
X1

X2

)
(4.3)

= X′1X1 + X′2X2.

The Coordinate-Exchange Algorithm can be used to construct the appropriate X2

matrix to maximize |X′1X1+X′2X2| and create an augmentedD-optimal design. Other

algorithms and strategies for D-optimal augmentation can be found in Atkinson et al.

(2007).
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Follow-up runs to traditional designs can also be added with Bayesian techniques.

Meyer et al. (1996) augmented designs with a Bayesian model-discrimination criterion

to resolve ambiguities between many plausible models in the presence of observed

data. Jones and Dumouchel (1996), in a discussion of Meyer et al.’s method, suggested

an F -criterion based on Fisher’s information matrix. Neff (1996) and Ruggoo and

Vandebroek (2004) proposed a two-stage, sequential Bayesian D-D optimal method

based on the Bayesian D-optimality criterion in DuMouchel and Jones. In the two-

stage Bayesian D-D optimal method, a first stage design is constructing to support

an assumed model with primary and potential terms. After the first stage, data

is analyzed via Box and Meyer (1993)’s model-discrimination method of calculating

posterior probabilities of possible models. A second stage design is then added to

maximize a weighted D-optimality criterion to support and discriminate the many

competing models.

In the next section, we extend the aforementioned work and develop the method-

ology to add runs to SSDs. It is important to mention several unique aspects to

augmenting SSDs. First, we are typically not interested in adding interactions or

quadratic effects to the assumed main-effect model; with the limited number of runs,

detecting the active main effects is the top priority. Second, the large number of

factors and small number of runs in SSDs means many models explain the data well.

As such, it is difficult to pick which model or models to build upon in the follow-up

runs. Therefore, instead of adding runs based on a model-discrimination criterion like

in Ruggoo and Vandebroek (2004), we add runs based on a categorization of factors.

A model-dependent augmentation strategy is computationally expensive. For exam-

ple, it took 7 hours to search for all 6 factor models in a 124 factor, 24 run design

(Edwards and Mee, 2011). Calculating larger models with a model-discrimination

criterion would be impractical. Categorizing factors into groups is more efficient.
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Further, categorization make the augmentation method dynamic because it is not

tied to a specific analysis method; the experimenter can analyze the initial data with

several methods to search for active factors.

4.3 Augmenting Supersaturated Designs with Bayesian D-optimality

Suppose an experimenter ran an SSD(n1, k) and can afford to add n2 more runs.

Our objective is to create the best possible augmented design, SSD(n1 +n2, k), given

the information from the initial n1 runs. To do this, we adopt the linear model

assumptions used to create Bayesian D-optimal SSDs and adapt them to add n2

runs to the design matrix. Let X1 be the original main-effect model matrix with

response vector y1. Assume the prior distribution of β is β|σ2 ∼ N(β0, σ
2R−1) for

a prior covariance matrix, R. Let the n2 × 1 vector of new observations, y2, have

the conditional distribution y2|β, σ2 ∼ N(X2β, σ
2In2×n2), where X2 is the additional

run matrix in model form. Then, as shown in Ruggoo and Vandebroek (2004), the

posterior distribution for β given y =

(
y1

y2

)
is

β|y ∼ N
[
b, σ2 (X′1X1 + X′2X2 + R)

−1
]

; (4.4)

where b = (X′1X1 + X′2X2 + R)−1 (X′1y1 + X′2y2 + Rβ0). To create a Bayesian D-

optimal augmented SSD, X2 is chosen to maximize |X′1X1 +X′2X2 +R|. Because runs

are added to an existing design, the prior information for the n2 follow-up runs comes

from the analysis of the original SSD(n1, k) with response vector y1. Like DuMouchel

and Jones (1994), prior information is incorporated into the design process through

the choice in R by classifying factors as primary or potential terms. We also introduce

a category of secondary terms.

After the first n1 runs, the experimenter can likely identify factors that appear

to be the most active. For instance, some factor or factor set may be detected in
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many different analysis methods. If evidence suggests the factor is in the true model,

the experimenter can classify it as a primary term. If there is an indication the

factor may be active, but it is not a predominant as the primary term, the factor

can be classified as a secondary term. Any factor that does not appear active can be

classified as a potential term (Section 4.3.1 expounds on classifying factors). Using

this classification, the augmented design SSD(n1 +n2, k) is constructed to reduce the

error variances of the parameter estimates under the Bayesian paradigm.

Let p1 denote the number of primary terms, p2 denote the number of secondary

terms, and p3 be the number of potential terms, where p1 + p2 + p3 = k+ 1 = p. The

p1 primary terms are the most likely to be active, so their effects, denoted βpri, are

given a diffuse prior. The p2 secondary terms with effects βsec are given a prior mean

of zero and a finite variance σ2γ2, while the p3 potential terms with effects βpot are

assigned a prior mean of zero and a finite variance σ2τ 2, where τ < γ. Larger scaling

factors for σ2 represent stronger beliefs that certain factors are active (Ruggoo and

Vandebroek, 2004). Using this information, R = J/γ2 + K/τ 2, where

J =



0

j1,1 0
j2,2

0 . . .

jk,k


and K =



0

k1,1 0
k2,2

0 . . .

kk,k


. (4.5)

For each i = 1, 2, . . . , k, we set ji,i = 1 if xi is a secondary term, 0 otherwise, and∑k
i=1 ji,i = p2. Similarly, ki,i = 1 if xi is a potential term, 0 otherwise, and

∑k
i=1 ki,i =

p3.
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The posterior distribution for β in (4.4) can be rewritten as

β|y ∼ N

[
b, σ2

(
X′1X1 + X′2X2 +

J

γ2
+

K

τ 2

)−1
]

; (4.6)

where b = (X′1X1 + X′2X2 + J/γ2 + K/τ 2)
−1

(X′1y1 + X′2y2 + (J/γ2 + K/τ 2)β0). There-

fore, a Bayesian D-optimal augmented SSD(n1+n2, k) with model matrix X =

(
X1

X2

)
is constructed by choosing X2 to maximize

∣∣∣∣X′1X1 + X′2X2 +
J

γ2
+

K

τ 2

∣∣∣∣ . (4.7)

Note that p1 < n1+n2 is a necessary condition to make the determinant calculation

in (4.7) nonzero. The Coordinate Exchange Algorithm is used to construct X2 to

optimize the objective function in (4.7).

4.3.1 Classifying Factors.

Getting information from the original SSD(n1, k) is not trivial, hence the motiva-

tion for additional runs. However, the objective function in (4.7) is dependent on the

experimenter using some information from the initial runs in order to classify the k

factors into groups. Different analysis techniques may identify conflicting sets of ac-

tive factors, and this can make it a challenge to assign the k factors into the primary,

secondary, or potential groups. Although a formal discussion about analyzing SSDs

is beyond the scope of this paper, we provide some suggestions on prioritizing factors

into the primary, secondary, or potential groups:

1. The intercept is always a primary term.
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2. If an experimenter must add runs but is not comfortable classifying the factors,

we suggest specifying all factors as potential terms to mimic the construction

of Bayesian D-optimal SSDs.

3. If an analysis method (or many methods) highlight a group of less than n1 +n2

key factors, specify the terms as primary.

4. If the number of factors of interest is larger than n1 +n2 runs, specify the terms

as secondary.

5. Terms with little evidence to suggest they are active should be classified as

potential.

Secondary terms let the experimenter differentiate between terms when more than

n1 + n2 factors are of interest. After running an SSD(n1, k), an experimenter may

identify a group of s key factors, where s > n1 + n2. Therefore, not all s factors can

be classified as the p1 primary terms, as p1 < n1 + n2 is required. To differentiate

between the s key factors and the remaining k − s, the experimenter can classify

all s factors as the p2 secondary terms. Secondary terms are given a larger prior

variance to suggest they are likely more active than the k − p2 potential terms. The

augmentation criterion then selects runs to discriminate between the two groups. An

example is given in Section 4.4.2.

4.3.2 Example Augmentation.

To visually compare how prior information influences the final SSD matrix, we

created a Bayesian D-optimal SSD(25,100) with the JMP statistical software and

added 25 runs to the original design. Using the Bayesian D-optimal augmentation

strategy, we created two augmented designs. For the first design, SSD(50,100)1,

every factor was classified as a potential term prior to adding the 25 runs. For the
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second design, SSD(50, 100)2, factors x1 − x30 were listed as primary and all others

potential. Figure 1 shows the grayscale maps of the correlations between the factors.

All examples in this paper use γ2 = 100 and τ 2 = 5; see Jones et al. (2008).
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Figure 5. Correlation Grayscale Maps of Supersaturated Designs: SSD(25,100) (L),
SSD(50, 100)1 with all potential terms (M), and SSD(50, 100)2 with 30 primary terms
(R)

In the grayscale correlation maps, white represents a small correlation between

factors (in absolute value), while black represents a perfect correlation. Maximizing

the criterion in (4.7) has the byproduct of de-aliasing factors by reducing the correla-

tions between factors. Comparing SSD(25,100) to SSD(50,100)1, it is not surprising

the color has lightened; the additional runs reduced the correlations between the

100 factors in the model, thereby increasing the likelihood an active factor will be

identified. The difference between SSD(50,100)1 (Figure 5 (M)) and SSD(50,100)2 (5

(R)) shows how classifying factors in the primary group reduces the pairwise correla-

tions between those factors. Analyzing the correlation values makes this relationship

clearer.

The average absolution correlation between a group of factors is defined as

|r| =
k−1∑
i=1

k∑
j=i+1

|ri,j|/(k(k − 1)/2);

where ri,j is the correlation between factors xi and xj. Smaller values |r| are pre-

ferred. Table 25 compares the designs’ absolute average correlations between primary

73



terms, primary terms and potential terms, and potential terms, denoted by |rpri×pri|,

|rpri×pot|, and |rpot×pot|, respectively. First, note that only SSD(50,100)2 differentiates

between primary and potential terms, but Table 25 contains values for each group

vs. group calculation to highlight how prior information reduces correlations between

factors of interest.

Table 25. Average Correlations of Factors in Augmented SSD(50,100)

Correlations |rpri×pri| |rpri×pot| |rpot×pot| |r|

SSD(25, 100) 0.150 0.143 0.145 0.145
SSD(50, 100)1 0.078 0.083 0.089 0.086
SSD(50, 100)2 0.064 0.068 0.128 0.097

SSD(25,100) has the highest correlation in all groups because it has the least

number of runs. Comparing |rpri×pri| and |rpri×pot| for SSD(50,100)1 and SSD(50,100)2

reveals that identifying factors as primary terms reduces the correlation between those

factors. The average absolute correlations between factors x1, . . . ,x30 are lower in

SSD(50,100)2 (0.064) than in SSD(50,100)1 (0.078) because we specified the terms

a priori as primary factors of interest and the design criterion in (4.7) forces the

additional runs to reduce the correlations between those factors. Note, however, that

the reduced correlations of |rpri×pri| and |rpri×pot| for SSD(50,100)2 were offset by a

higher |rpot×pot|.

To compare the designs further, define the maximum absolute correlation of factors

in a group

|r|max = max
i 6=j
|ri,j|.

Smaller values are also preferred here. Let |rpri×pri|max,|rpri×pot|max, and |rpot×pot|max

denote the maximum absolute correlations of factors in the primary, primary and

potential, and potential groups, respectively. Table 26 shows the augmented designs

have smaller values than the original SSD(25, 100), as expected. Further, classifying
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factors as primary reduces the maximum absolute correlation between those factors

in SSD(50,100)2 compared to SSD(50,100)1.

Table 26. Maximum Correlations of Factors in Augmented SSD(50,100)

Correlations |rpri×pri|max |rpri×pot|max |rpot×pot|max |r|max

SSD(25, 100) 0.603 0.603 0.603 0.603
SSD(50, 100)1 0.281 0.414 0.361 0.414
SSD(50, 100)2 0.250 0.327 0.560 0.560

4.4 Comparisons

In this section, we compare the performance of Bayesian D-optimal SSDs to the

extended E(s2)-optimal designs. Gupta et al. (2010) added runs to two E(s2)-optimal

designs, SSD(8,13) and SSD(7,15). For SSD(8,13), Gupta et al. listed the best n2 =

1, 2, 3, and 4 run(s) to add to the original design to minimize E(s2). For SSD(7,15),

they listed the best n2 = 3 additional runs. We highlight these examples because, to

date, they are the only two-level augmented SSDs in the literature. The additional

runs suggested in Gupta et al. are optimal with respect to E(s2), but the runs are

independent of the initial data. Hence, for a given SSD(n1, k) and number of new

runs, n2, the same additional runs are suggested. In contrast, the Bayesian D-optimal

augmentation method uses information from the first n1 runs to improve the selection

of the additional n2 runs.

We perform a side-by-side comparison of the proposed methods with the following

methodology: First, we randomly created two main-effect models to study for both

SSD(8,13) and SSD(7,15). Each model was randomly chosen to have 3 to 5 active

factors with effect sizes drawn uniformly between -15 and 15. The location of the

active factors was also random. All responses were generated from the models with

σ2 = 1. Next, we added the extended E(s2)-optimal runs prescribed in Gupta et al.
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and recorded the new response(s). For the Bayesian D-optimal approach, the initial

design and response variables were analyzed. Then, we classified factors into their

appropriate groups, added the required number of runs by maximizing the objective

function in (4.7), and recorded the new responses. Finally, we analyzed the screening

results of the final Bayesian D-optimal augmented SSDs and Gupta et al.’s final

extended E(s2)-optimal SSDs to see which strategy provides a better recovery of the

underlying model.

The SSDs in this section are analyzed with basic regression methods and screening

techniques: forward and all-subsets regression (for up to 5 factors) and Half Normal

plots, which visually identify factors whose effects seem larger than random noise

(Daniel, 1959). While traditional regression analysis methods do not always work well

when used for the analysis of SSDs, the supposition is that if augmentation works well

for the traditional methods, it will work well for more sophisticated analysis methods.

All analysis results were calculated using the JMP software. For forward regression,

terms were added based on a p-value to enter of 0.05.

4.4.1 Adding runs to an E(s2)-optimal SSD(8,13).

Consider the E(s2)-optimal SSD(8,13) in Table 27 (Runs 1-8) with responses

generated from the equations

1. y1 = 10x3 + 8x4 + 6x5 − 9x11 + ε, ε ∼ N(0, I8); and

2. y2 = −10x4 + 12x5 + 7x6 − 11x10 − 6x13 + ε, ε ∼ N(0, I8).

Table 27 also contains the n2=1, 2, 3, and 4 runs to add suggested by Gupta et al.

to create SSD(8+n2,13) E(s2)-optimal designs along with the appropriate responses.

Again, we emphasize that extended E(s2)-optimality recommends the same runs for

each model, whereas the runs added via our Bayesian D-optimal approach will be

different for each model.
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Table 27. E(s2)-optimal SSD(8,13) and additional 1, 2, 3, & 4 runs to create extended
E(s2)-optimal designs, as presented in Gupta et al. (2010)

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 y1 y2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 15.320 -6.433
2 1 1 1 -1 -1 1 -1 -1 -1 1 -1 -1 1 3.588 -11.122
3 1 -1 -1 -1 1 -1 1 -1 1 -1 -1 1 1 -3.159 19.684
4 1 -1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 14.380 12.237
5 -1 1 -1 1 -1 -1 -1 1 1 -1 -1 -1 1 1.696 -22.798
6 -1 1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 -20.391 8.646
7 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 -1 -12.956 21.218
8 -1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 0.306 -20.313

9 1 1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 20.707 -12.700

9 1 1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 18.236 -11.398
10 -1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -19.953 12.007

9 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 1 -4.712 -9.609
10 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -3.304 47.024
11 1 -1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 6.918 -13.521

9 1 1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 21.600 -11.596
10 1 -1 -1 1 1 1 -1 1 1 1 -1 -1 -1 14.120 4.539
11 -1 1 -1 -1 1 1 1 -1 -1 -1 1 -1 1 -20.515 33.206
12 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 1 -13.339 -25.110
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Using Half Normal Plots, forward regression, and all-subsets regression, we an-

alyzed the response variables from SSD(8,13) and classified factors as primary, sec-

ondary, or potential. Table 28 summarizes the initial analysis results. For example,

the Half Normal Plot failed to indicate any factor to be significantly greater than

experimental noise for either model. However, applying forward regression on y1

selected factors x4,x1,x5,x11 as the top four “active” factors. Further analysis on

the first 8 runs with all-subsets regression indicated factors x1,x3,x4, and x5 are of

particular interest, as the top models contain only those four factors. Coupled with

the results from forward regression, five factors are likely to be active: x1,x3,x4,x5,

and x11. If the analysis stopped here, all true active factors would be identified -

x3,x4,x5, and x11 - but a false effect would remain, x1. Augmenting the design with

additional runs may help resolve this issue. Based on the initial results, these five

factors of interest were classified as primary terms, as indicated by βpri in Table 28.

All other terms were classified as potential because there was no indication any other

factor was truly active.

A similar approach was carried out to analyze y2. Forward regression identified

x2,x4,x5,x10, and x11 as potentially active, whereas the best five-term model selected

with all-subsets regression contained x4,x5,x6,x10, and x13. The union of terms

were placed in the primary group; all others were classified as potential. Next, runs

were added to SSD(8,13) to get more information out of the respective models. The

suggested n2 = 1, 2, 3, or 4 Bayesian D-optimal runs to add for each model are listed

in Table 29.

Table 30 compares the final analysis results of y1 on SSD(9,13), SSD(10,13),

SSD(11,13), and SSD(12,13). The true underlying model contained the active fac-

tors x3,x4,x5, and x11. These factors, and only these factors, were identified by at

least one analysis method in each of the Bayesian D-optimal designs. In all extended
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E(s2)-optimal designs, x1 was incorrectly selected as an active factor, a Type I error.

Moreover, all three analysis methods correctly identified all active factors for the 11-

run and 12-run Bayesian D-optimal designs. The results suggest using information

from the initial design can improve the selection of additional runs and ultimately

improve screening results. This example also highlights that having a false effect, x1,

labeled as a primary factor after the first 8 runs is helpful because the new runs will

test to see if it is truly active. Table 31 compares the final analysis results of the

data generated from the second model. Analysis of y2 is more consistent between

the E(s2) and Bayesian D-optimal SSDs than for y1, but note for the 9 and 10-run

designs, the Bayesian design performed better with respect to forward regression.

4.4.2 Adding runs to an E(s2)-optimal SSD(7,15).

Consider the E(s2)-optimal SSD(7,15) in Table 32 (Runs 1-7) with responses

generated from the equations

1. y1 = −8x5 − 3x10 + 11x14 + ε, ε ∼ N(0, I7).

2. y2 = −10x2 + 6x4 + 3x7 + 11x9 + 5x13 + ε, ε ∼ N(0, I7).

In this example, we can afford to add three more runs to the design. Table 32

contains the three runs suggested by Gupta et al. (Runs 8-10), as well as the three

runs created with the Bayesian D-optimal method. Note again that the new runs

under the Bayesian approach are different for each model. The runs were added

based on the classification presented in Table 33.

An initial analysis of y1 on SSD(7,15) correctly identified the true active fac-

tors. To confirm the results, x5,x10, and x14 were placed in the primary group while

all others were classified as potential terms. For y2, the analysis of SSD(7,15) was

more challenging. A Half Normal Plot did not indicate any factors were substan-

tially larger than experimental noise. Forward regression, on the other hand, selected
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x1,x9,x5,x10,x4 as the five most important factors. All-subsets regression presented

conflicting results because the best five-factor model only contained one factor in the

best four-factor model. Factors x2,x3,x4,x7,x8,x10,x12, and x13 were all flagged in

either the best four-factor or five-factor model in all-subsets regression. Coupled with

the factors from forward regression, this creates 11 factors of interest.

Because 11 factors are of interest and the final design will only have 10 runs, all

factors cannot be listed as primary terms. Moreover, there is not substantial evidence

to suggest some of the 11 factors are likely more active than the others, but evidence

does suggest these 11 factors are more important than the four factors not detected

by any analysis method. Therefore, we classified these 11 factors as secondary and

classified the remaining four as potential terms.

The final analysis of both models is presented in Table 34. For the first model, both

the E(s2) and Bayesian D designs performed well. For the second model, however,

the Bayesian design performed better. In the Half Normal Plot, factors x1,x9,x5,

and x2 were deemed active using the method proposed by Gupta et al., but only

factors x2 and x9 are truly active. Further, factors x4,x7, and x13 were not detected,

even though they are active. In contrast, the Half Normal Plot for the Bayesian

D-optimal SSD(10,15) correctly identified only the five important factors. Forward

regression and all-subsets regression also indicate the Bayesian D-optimal method is

favorable, as forward regression on the extended E(s2)-optimal SSD(10,15) detected

x1,x9,x5,x2,x8 as important, whereas forward regression on the extended Bayesian

D-optimal SSD(10,15) marked the true active factors as important: x9,x2,x4,x13,x7.

4.5 Discussion and Conclusions

We adapted Bayesian D-optimality to add runs to existing supersaturated de-

signs by using information from the initial experiment. After running and analyzing
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an SSD(n1, k), an experimenter can classify factors as primary, secondary, or poten-

tial depending on how active they appear to be. Using this prior information, n2

runs are added to form a Bayesian D-optimal augmented SSD(n1 + n2, k). The com-

parison study in Section 4.4 indicates the augmentation strategy can perform well

against previous methods where designs are augmented to maintain E(s2)-optimality

independently of the data.

Our goal with this paper is to introduce the method, but several points deserve

explanation. Additional runs are chosen to maximize the Bayesian D-optimality

criterion, which is dependent on a classification of factors. The initial classification

can play a role in the reliability of the method, but misclassification is not always

troubling. In Section 4.4.1, an inactive factor, x1, was listed as a primary term because

the complicated confounding pattered in the SSD(8,13) inflated its initial parameter

estimate. The additional runs reduced the bias from the true active factors, so in

the final design, the parameter estimate for x1 was no longer artificially inflated.

The misclassification was not detrimental to the screening process. We have seen

some models where an incorrect initial classification led to more Type I or Type II

errors than the extended E(s2)-optimal designs, but this is not a surprising result.

Regardless of the optimality criterion used to add runs, both the initial design and

augmented design are still supersaturated with complicated aliasing structures. As

such, there is always a risk of not finding the true active factors. Our methodology,

however, is more general than the extended E(s2)-optimality approach, as it can

augment any SSD with any number of designed runs, whereas extended E(s2)-optimal

designs are only known for certain combinations of n1, n2, and k. Moreover, our

technique can easily extend to SSDs with more than two levels, and while we employed

the Coordinate Exchange Algorithm, different design algorithms could be applied if

desired.
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Another important issue, suggested by one referee, is the determination of n2 if

the decision maker asked for a recommendation. In other words, given n1, what will

be an ideal n2? This is a sensible issue; we hope that we will be able to report some

findings in the near future. In a perfect world, n2 would be as large as possible while

keeping within the screening budget. The results in Section 4.4.1 provide evidence to

this because the simulation results improved as more runs were added. Of course, all

SSDs take place in a constrained environment. If the budget was highly constrained,

an experimenter is already taking on a certain amount of risk. Some research suggests

SSDs work best when k is no more than 2n (Marley and Woods, 2010). Thus, an

initial suggestion to a decision maker on n2 may be to add at least n2 runs to make

n1 + n2 > .5k. With that said, the presented method can still augment an existing

SSD with any number of runs.
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V. Constructing Supersaturated Designs with High

Resolution-Rank

This article addresses concerns with the E(s2)-optimality criterion for balanced,

two-level supersaturated designs and introduces a catalogue of new designs with high

resolution-rank, a criterion that directly assesses a supersaturated design’s ability to

detect active factors. Several of the designs presented are provably optimal. The

search for supersaturated designs with high resolution-rank is aided by binary integer

programming and design isomorphism properties.

5.1 Introduction

Supersaturated designs are fractional factorial designs with k factors and n <

k+ 1 runs, denoted SSD(n, k). They are used in screening experiments when a great

number of input factors must be efficiently separated into (i) the small number of

factors that actually produce an effect on the output, and (ii) the larger pool of

irrelevant factors. Call these factors active and inactive, respectively. The difficulty

with such a screening experiment is that we do not know which or how many of the

k factors are active. To put another way, assume the input-output relationship of the

system can be mathematically expressed with the linear main-effects model

y = β01 + β1x1 + · · ·+ βkxk + ε (5.1)

where y is the response vector, β0, . . . , βk are the p = k + 1 unknown model pa-

rameters, and ε ∼ N(0, σ2In) is the error term. The goal of SSDs is to identify the

nonzero βi’s. It is, of course, impossible to simultaneously calculate the ordinary least

squares (OLS) estimates for all main effects because n < k + 1 = p (i.e the system

is underdetermined). But, if the assumption of effect sparsity holds true and g < n
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factors are indeed active (Box and Meyer, 1986), it would be possible to calculate

the OLS estimates of a g-term model, provided the g factor columns formed a lin-

early independent set. Therefore, it seems reasonable to construct designs capable

of estimating the largest g-term main-effect model possible. This article describes

construction algorithms for such designs.

Some notation and background discussion are necessary. This paper focuses on

two-level SSDs with an even number of runs, n. Let SSD(n, k) be an n × k design

matrix of +1’s and −1’s, which represent each factor’s high-level and low-level setting,

respectively. Each row of the matrix contains the factor-level settings for all k factors

in an experimental run. We assume that each column xi has the same number of +1’s

and −1’s; such a design is called balanced and ensures each factor’s orthogonality to

the grand mean. Further, no two columns are completely aliased. Thus, if i 6= j,

xi 6= xj and xi 6= −xj for all i, j ∈ {1, 2, . . . , k}. Consequently, a balanced two-level

SSD(n, k) can have at most
(
n
n/2

)
/2 =

(
n−1
n/2−1

)
factors. The number of factors, k, is

therefore bounded by

n− 1 < k ≤
(
n− 1

n/2− 1

)
. (5.2)

The most prevalent criterion to measure the quality or goodness of a balanced two-

level SSD is E(s2). For a matrix X = (x1| . . . |xk), E(s2) =
∑

i<j s
2
ij/(k(k − 1)/2),

where sij is the (i, j)th element of X′X. Reducing a design’s E(s2) effectively reduces

the average correlation between all possible pairs of factors. E(s2) has a long history

in the study of SSDs; it was proposed by Booth and Cox (1962) and later studied by

Lin (1993), Wu (1993), Nguyen (1996), Tang and Wu (1997), Bulutoglu and Cheng

(2004), Suen and Das (2010), and many others. Designs that are optimal with respect

to the E(s2) criterion, however, may not adequately be able to detect all active factors.

Consider the SSD(8,10) in Table 35.
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Table 35. E(s2)-optimal SSD(8,10)

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 − − − − − + − + + −
2 + − − + + + − − − −
3 − − + − + − − + − +
4 + + + + − + + + − +
5 − + + + − − − − + +
6 + − − + + − + + + +
7 + + − − − − + − − −
8 − + + − + + + − + −

The design is E(s2)-optimal with E(s2) = 4.2667. As noted earlier, another

important quality of a design is its ability to estimate the largest g-term main-effect

model possible. The E(s2)-optimal design in Table 35 can technically estimate a

model with n− 1 = 7 factors (or n = 8 total effects with the intercept term) because

rank(X)=7. However, the design cannot estimate all seven-factor models because

not all sets of seven columns in X are linearly independent. For example, the five-

column submatrix X∗ = (x1|x3|x4|x7|x9) has rank(X∗) = 4. A main-effect model with

these active factors would not be estimable because b∗ = (X∗′X∗)−1X∗′y cannot be

calculated. The design is only guaranteed to estimate all four-factor models because

all
(

10
4

)
= 210 four-column sets of Table 35 are linearly independent, and there exists

at least one set of five columns, X∗, that is linearly dependent. A preferable SSD(8,10)

is presented in Table 36. The design is also E(s2)-optimal but it has the capability

of estimating all six-factor models because all
(

10
6

)
= 210 six-column sets are linearly

independent. We will prove in later sections that this is the best possible SSD(8,10)

with respect to model estimation.

Table 36. Alternative E(s2)-optimal SSD(8,10) with Resolution-Rank=6

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 + + + + + + + + + +
2 + + + + − − − − − −
3 + + − − + + + − − −
4 + − − − + − − + + +
5 − − + − − + − + − −
6 − − + + + − + − + −
7 − + − − − + − − + +
8 − − − + − − + + − +
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There are several criteria based on a design’s ability to project into the largest

possible estimable model (see §5.2). Here, we focus on the resolution-rank criterion

presented in Deng et al. (1996, 1999) because it was the first model estimation criterion

proposed to study SSDs. Two formal definitions are as follows:

Definition (Deng et al., 1996) Let X = (x1| . . . |xk) be an n × k matrix. The

resolution-rank of X (r-rank for short) is defined as max{g : for any (xi1, . . . ,xig) of

X, the set xi1, . . . ,xig is linearly independent}.

Definition (Lin, 2003) Let X be an equal occurrence (aka balanced) design matrix.

The r-rank of X is defined as g = d − 1, where d is the minimum number of subset

columns that are linearly dependent.

The design in Table 35 has r-rank = 4 while the design in Table 36 has r-rank

= 6. While these designs have equivalent E(s2) values, it is often the case that X1

= SSD1(n, k) and X2 = SSD2(n, k) have different E(s2) values if r-rank(X1) 6= r-

rank(X2). It is also possible for two designs to have equivalent r-ranks and different

E(s2) values. In this paper, we search for balanced two-level SSDs with high r-rank,

and if more than one design for a given r-rank is discovered, we use E(s2) as a

secondary criterion and report the design with the lowest E(s2) value.

In Section 5.2, we review similar criteria to r-rank and discuss past results. In

Section 5.3, we introduce new techniques to search for designs with high r-rank. We

seek the largest k such that SSD(n, k) has r-rank = g by formulating the search

as a set-covering problem. Then, we present a search algorithm based on design

equivalence. Results and new designs are presented in Section 5.4 and a general

summary concludes the paper in Section 5.5.
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5.2 Design Criteria

Several design criteria measure the ability of an SSD to estimate all g-term models,

where g is as large as possible. The r-rank of a design is such a criterion. Others

include a design’s resolving power, estimation capacity (ECg), and MDS-abberation.

Each is described in this section.

5.2.1 Resolving Power of Search Designs.

To detect the few non-negligible factors in an experiment from the many negligible,

Srivastava (1975) introduced search linear models (SLM), which are represented as

E(y) = X1β1 + X2β2, (5.3)

where y is the response vector with Var(y) = σ2I, X1(n × k1) and X2(n × k2) are

known model matrices, β1 is a vector of k1 fixed, but unknown, effects of primary

interest, and β2 is a vector k2 effects in which it’s assumed at most g elements of β2

are nonzero. The identity of the g elements are unknown. If the nonzero elements

of β2 are not correctly identified, they will be a source of bias for β1. Srivastava

accordingly proposed a search of the nonzero terms in β2. In the case of SSDs, the

only fixed effect, X1 in (5.3), is the intercept term, 1(n × 1). All other factors are

unknown. Therefore, for an SSD design matrix X=SSD(n, k), Equation (5.3) can be

rewritten as

E(y) = 1β0 + Xβ, (5.4)

with Var(y) = σ2I. Here, β is the vector of the k effects in which it’s assume at most

g elements are nonzero. Srivastava gave the following theorem:

Theorem 5.2.1 In the noiseless linear search model y = 1β0 +Xβ, a necessary and

sufficient condition to find f active factors is that for every (n × 2f) submatrix X∗
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of X,

rank(1|X∗) = 1 + 2f.

The condition is equivalent to: rank(X∗) = 2f for every submatrix X∗ of X. This

highlights a difference between a design’s ability to estimate a model and its ability

to differentiate between models. A design that can estimate all g-term models can

differentiate between all competing f = g/2-term models. Two models, each with

f -terms, will not be able to produce the same output since the combined set of factors

has at most 2f = g columns, which are linearly independent and can therefore only

produce one output. The quality of every (n×2f) submatrix being linear independent

is called the P2f property or resolving power. For more on linear search designs, see

Ghosh and Avila (1985), Morgan et al. (2012), and references therein.

5.2.2 Model Robust Supersaturated Designs and gmax.

Jones et al. (2009) extended the work of Li and Nachtsheim (2000)’s model robust

factorial designs into model-robust supersaturated (MRSS) designs. They state “a key

characteristic of any supersaturated design is its estimation capacity ECg,” where

ECg =
number of estimable g-term main-effect models

total number of g-term main-effect models
. (5.5)

There are
(
k
g

)
g-term main-effect models and an ECg = 1.0 implies all are estimable.

For a given design, the criterion of interest, gmax, is defined as

gmax := the maximum value of g for which ECg is 1.0. (5.6)

A design’s gmax is equivalent to its r-rank because a design is only estimable if its

factor columns are linearly independent. Jones et al. used a computer search to

create MRSS designs (and consequently designs with high r-rank) that addressed the
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following questions: (1) For a given SSD(n, k), what is the maximum number of active

factors, g, that can be accommodated with ECg = 1.0? (2) For a given number of

factors, k, and an upper bound g on the number of active factors, how small can the

sample size be, retaining ECg = 1.0? And, (3) For a given sample size n and an

upper bound g on the number of active factors, how many factors k can an MRSS

design incorporate, while maintaining ECg = 1.0? The authors searched for designs

to answer the above questions using heuristic computer searchers. We extend their

work and pay particular attention to question (3) because answering it effectively

answers question (1) and (2).

5.2.3 MDS-resolution.

Two recent papers by Miller and Tang (2012, 2013) considered minimal dependent

sets (MDSs) to evaluate SSDs. For a given matrix, an MDS is a set of column vectors

that are linearly dependent, but if you remove any one column, the remaining subset

becomes linearly independent. The size of an MDS is the number of columns in the

set. For a matrix, X, let Aj be the number of MDSs of size j. This defines an MDS

sequence (A1, A2, . . . , Ak). The MDS-resolution is defined as the smallest j such that

Aj 6= 0. More succinctly, MDS-resolution := minAj 6=0 j. The MDS resolution is the

size of the smallest dependent set of columns. Thus, MDS-resolution = r-rank + 1.

Another useful criterion is MDS-aberration. When comparing the MDS sequences

of two designs, find the smallest j such that the Aj’s are not equal. The matrix with

the smaller Aj is said to have less MDS-abberation. Miller and Tang created some

MDS-optimal SSDs using computer searchers for designs with a few more columns

than rows. Specifically, they searched for SSD(n, k) designs where k = n, n + 1, n +

2, n+ 3, and n+ 4. These designs can be said to be “oversaturated” since they have

only a few columns beyond saturation (Deng et al., 1996).
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5.2.4 Summary.

Note that r-rank, gmax, and the P2f property, despite subtle nuances, are equiva-

lent. All provide the answer to the question: given a matrix, X, what is the maximum

number g such that all g columns are linearly independent? This number is exactly

one less than X’s MDS-resolution. If one column is removed from the smallest set

linearly dependent columns, the remaining g will be linearly independent. The moti-

vation for each criterion can be summarized as:

1. When a design matrix is projected into any submatrix of g or fewer factors, we

want the main effects of the design to be estimable. This implies there is a least

one g + 1 main effect model that is not estimable.

2. We also want designs with the ability to differentiate or discriminate between

competing models.

We now describe the methodology to find the find the largest number of columns

k such that SSD(n, k) has a given r-rank = g. Note that calculating the r-rank

can be a time-consuming task. To test if r-rank(X) = g, the rank of all
(
k
g

)
sets of

columns must be calculated. As k grows, the calculations become infeasible. In fact,

the problem can be shown to be NP-hard (Khachiyan, 1995). Given this constraint,

most research on model discrimination for SSDs has focused on designs where n and

k are not exceedingly large. We focus on the r-rank of designs where n=6, 8, 10, and

12, and prove optimality in cases n = 6 and n = 8.

5.3 Methodology

To explore the r-rank of designs, it is helpful to establish lower and upper bounds.

Let X = SSD(n, k) and 1 be an n× 1 column of 1’s. Since X is balanced, 1′X = 0′.

Thus, the left null space of X is nonempty and rank(X) ≤ n− 1. And, by definition,
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it is clear that r-rank(X) ≤ rank(X), so r-rank(X) ≤ n − 1. The lower bound for

r-rank(X) was shown to be three (Miller and Tang, 2012). The bounds for g = r-

rank(X) are then

3 ≤ g ≤ n− 1. (5.7)

From Eq. 5.2, an SSD with n runs can have at most k =
(
n−1
n/2−1

)
factors. Combined

with Eq. 5.7, we know that for any n, SSD(n,
(
n−1
n/2−1

)
) has r-rank = 3. Intuitively, it

makes sense that designs with large k have a low r-rank because the presence of many

columns means there is a greater chance for a set to be linearly dependent. As the

number of columns in a design decreases, the r-rank can only increase. The difficult

part is deciding which columns to remove from the full design to create a new design

with a larger r-rank.

5.3.1 Formulation as a Set Covering Problem.

Let X be the full SSD(n, k), where k =
(
n−1
n/2−1

)
. Any design with n rows and r-

rank > 3 contains a subset of columns from the full design, X. The goal is to minimize

the number of columns deleted from X such that the remaining design has r-rank =

4. That is to say, no four columns of the resulting matrix can form a dependent set.

For i = 1, . . . , k, let ci = 1 if column xi is deleted from X, 0 otherwise. Denote the

remaining columns of X as X∗. Thus, the objective is

min
k∑
i=1

ci, subject to r-rank(X∗) = 4. (5.8)

To accomplish this, enumerate all 4-tuples of X that are linearly dependent. Say

there are m of these, denoted A1, A2, . . . , Am. At least one entry from each Ai must

be deleted, i.e.
∑

j∈Ai
cj ≥ 1 for i = 1, . . . ,m. This creates a Set Covering Problem

because the columns deleted from X must “cover” the dependent 4-tuples. Written
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another way, let A be an m × k binary matrix where row i of A contains 1’s in the

column entries corresponding to Ai, 0 otherwise. Eq. 5.8 can then be written as a

binary integer program:

min
k∑
i=1

ci such that


Ac ≥ 1

ci ∈ {0, 1}
, (5.9)

where c′ = (c1, . . . , ck). As an example, consider the full SSD for n = 6, SSD(6, 10)

in Table 37.

Table 37. Full SSD(6,10)

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 + + + + + + + + + +
2 + + + + − − − − − −
3 + − − − + + + − − −
4 − + − − + − − + + −
5 − − + − − + − + − +
6 − − − + − − + − + +

All
(

10
4

)
= 210 sets of four columns were tested for linearly dependencies. If the set

of columns formed a dependent set (i.e. had rank 3), the indices of the columns were

marked in a row of the binary matrix, A6. 15 problem cases were detected, resulting

in
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A6 =



x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1 0 0 0 1 0 1 0 0
1 1 0 0 0 0 1 0 1 0
1 0 1 0 1 0 0 1 0 0
1 0 1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0 1 0
1 0 0 1 0 1 0 0 0 1
0 1 1 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0 1 1
0 1 0 1 1 0 1 0 0 0
0 1 0 1 0 0 0 1 0 1
0 0 1 1 0 1 1 0 0 0
0 0 1 1 0 0 0 1 1 0
0 0 0 0 1 1 0 0 1 1
0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 1 1 1 1 0



(5.10)

The second row of A, for instance, reveals that {x1,x2,x7,x9} of SSD(6, 10) form a

dependent set. Formulating the problem as described in Eq. 5.9 allows the use of the

bintprog function in MATLAB. One solution to the problem is given by

A6 =



x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1 0 0 0 1 0 1 0 0
1 1 0 0 0 0 1 0 1 0
1 0 1 0 1 0 0 1 0 0
1 0 1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0 1 0
1 0 0 1 0 1 0 0 0 1
0 1 1 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0 1 1
0 1 0 1 1 0 1 0 0 0
0 1 0 1 0 0 0 1 0 1
0 0 1 1 0 1 1 0 0 0
0 0 1 1 0 0 0 1 1 0
0 0 0 0 1 1 0 0 1 1
0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 1 1 1 1 0



(5.11)

At least one entry from each row is “covered” by the gray columns in Eq. 5.11.

Deleting the corresponding rows from Table 37 results in the design shown in Table
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38. Because at least one entry from all dependent sets has been removed, the design

has r-rank ≥ 4. In this case, the design actually has r-rank = 5; it is therefore

optimal.

Table 38. SSD(6,6) with r-rank = 5

1 2 3 4 5 6

+ + + + + +
+ + − − − −
− − + + − −
− − + − + −
+ − − − − +
− + − + + +

We also applied the methodology to the full SSD with n = 8, SSD(8, 35). The

binary matrix A8 contained 630 row (i.e. constraints) and consequently took many

hours to solve. The bintprog program identified 21 columns to delete from the full

matrix, resulting in the SSD(8, 14) design in Table 39 with r-rank = 4.

Table 39. SSD(8,14) with r-rank = 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

+ + + + + + + + + + + + + +
+ + + + + + − − − − − − − −
+ + − − − − + + + + − − − −
+ − + − − − + − − − + + + −
− − + + − − − + + − + − − +
− − − + + − + − − + − + − +
− + − − − + − + − − − + + +
− − − − + + − − + + + − + −

The set cover formulation of the problem quickly reaches computational infeasi-

bility. For n = 10, the full SSD(10,126) contains 20475 dependent 4-tuples. The

process of finding and generating A10 is itself a computationally expensive task; find-

ing the minimum set cover of such a large binary matrix is impractical. The full

SSD(12,462) contains 623700 constraints, and our code failed to even find all depen-

dent 4-tuples of SSD(14,1716), as this would require the search and rank calculations

for
(

1716
4

)
= 3.6003×1011 column sets. To further complicate the issue, the constraints

are not redundant; in other words, there is no known way to reduce the number of
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rows in An. This realization highlights how difficult it is to search for r-rank optimal

SSDs. Nevertheless, the set cover formulation can be applied to a general SSD, as

opposed to the full design, to see how many columns can be removed to increase

the r-rank. For example, the SSD(8,10) in Table 36 can be found by searching for

all dependent 6-tuples in the optimal SSD(8,14). We note, however, that this does

not guarantee the optimal number of columns for a given r-rank because the column

search is limited to a subset of the full design.

5.3.2 Design Equivalence Extension Algorithm.

The construction of SSDs with high r-rank can also be accomplished with an ex-

tensive computer search of non-equivalent designs. Two designs, X1 and X2, are said

to be equivalent if one can be obtained from the other through a series of row permu-

tations, column permutations, multiplying row i by −1 (1 ≤ i ≤ n), or multiplying

column j by −1 (1 ≤ j ≤ k) (McKay, 1979). Thus, designs that are equivalent to

each other maintain the same statistical properties; for example, rank. As an exten-

sion, two equivalent designs must also have the same r-rank. The motivation behind

working with design equivalence is that it reduces the number of distinct matrices in

the search set. For instance, SSD(8,35) has
(

35
4

)
= 52360 four-column sets, of which

51730 are linearly independent (the other 630 make up the rows of the aforementioned

A8). The 51730 designs can be reduced to just 12 non-equivalent designs, a substan-

tial decrease. All design equivalence reductions in this paper were performed with

the program nauty (no automorphisms, yes?) from McKay and Piperno (2013), a

free program in C.

For a given n and r-rank = g, we seek the largest k such that SSD(n, k) satisfies

r-rank = g. Our algorithm is as follows:
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1. Enumerate and store all non-equivalent, linearly independent g-factor, n-run

balanced designs.

2. Extend each stored design with all possible balanced columns.

3. Reduce the entire set of extended designs to a set of non-equivalent designs.

4. Enumerate and store all non-equivalent extended designs with r-rank = g.

Delete all others.

5. Repeat Steps 2-4 until the number of viable extensions goes to 0.

A similar algorithm was performed by Miller and Tang (2013), though they did not

use nauty and only searched for designs with up to k = n+4 columns. In comparison,

the final iteration of our algorithm will contain the set all maximum non-equivalent

SSDs with n rows and r-rank = g.

We carried out the algorithm on n = 6 and n = 8 for g = 4, . . . , n− 1. For n = 6,

one non-equivalent SSD(6,6) was discovered for both g = 4 and g = 6. The design is

therefore equivalent to the design in Table 38 found via set covering. For n = 8, the

results are more interesting. As mentioned, there are 12 non-equivalent 8×4 balanced

designs with rank 4. Each of the 12 designs in this “seed” was extended with the

columns from the full SSD(8,35) to create a class of 8× 5 balanced designs. The set

was reduced to a set of mutually exclusive, non-equivalent designs using nauty. All

designs with r-rank = 4 were stored, leaving 29 unique 8 × 5 balanced designs with

r-rank 4. The process continued adding columns until the algorithm could no longer

find a viable extension. The final design was an SSD(8,14) with r-rank = 4, proving

that 14 is the maximum number of columns an 8-run SSD can have to maintain r-

rank = 4. Note the same design, shown previously in Table 39, was also found via

set covering.
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Table 40 shows the number of 8× k non-equivalent designs with r-rank = g as k

starts at g and increases until no extensions are plausible. The final designs SSD(8,14)

with r-rank = 4; SSD(8,12) with r-rank = 5; and SSD(8,10) with r-rank = 6 are all

unique up to equivalence and contain the largest number of columns for the given r-

rank. For n = 8 and g = 7, 38 non-equivalent designs with k = 8 were created. Thus,

SSD(8,8) is the largest design with r-rank = 7, but there are 38 such designs. One

design, for instance, has E(s2) = 10.8571 while another has E(s2) = 4.00. The design

with E(s2) = 4.00 is shown in Section 5.4.1 along with SSD(8,10) and SSD(8,12).

Table 40. Number of 8× k non-equivalent designs with r-rank = g

k g
4 5 6 7

4 12 . . .
5 29 28 . .
6 80 77 73 .
7 185 171 144 135
8 314 253 101 38
9 345 202 6 .

10 205 61 1 .
11 61 8 . .
12 11 1 . .
13 3 . . .
14 1 . . .

5.3.3 Heuristic Search.

Like the set cover formulation, the design equivalence extension algorithm quickly

becomes computationally intractable. For n = 10, there are 28 10× 4 non-equivalent

balanced designs with rank 4, 168 10× 5 designs with r-rank 4, 1668 10× 6 designs,

and 21445 10 × 7 designs. The computer froze at the point; extending each of the

21445 designs with every column from SSD(10, 126) caused a memory error. To

combat this, we modified the above algorithm; rather than a seed set of all non-
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equivalent n × g designs, we started the extension algorithm on a random set of

non-equivalent n× (n−1) designs with rank n−1. The motivation for this was based

on our observation that SSDs with high r-rank have rank n− 1. Further, a full rank

n× (n−1) design by definition satisfies the property that all
(
n−1
g

)
set of columns are

linearly independent for g = 2, . . . , n−1. In other words, it represents a starting point

for any design with any r-rank. We then add columns to this design, testing if each

extension maintains r-rank = g. As with every heuristic algorithm, optimality is not

guaranteed, but we can still get new and improved results. The heuristic algorithm

is as follows:

1. Create a random set of n× (n− 1) balanced designs and store all designs with

rank n− 1.

2. Reduce the designs to create a set of non-equivalent designs with rank n− 1.

3. Extend each stored design with a random set of balanced columns.

4. Reduce the entire set of extended designs to a set of non-equivalent designs.

5. Enumerate and store all non-equivalent extended designs with r-rank = g.

Delete all others.

6. Repeat Steps 3-5 until the number of viable extensions goes to 0.

We applied the heuristic algorithm to search for SSDs with n = 10 and n = 12 with

g = 4, . . . , n−1. For n = 10, we discovered an SSD(10,13) with r-rank = 8, improving

the SSD(8,12) with r-rank = 8 in Miller and Tang (2013). We also found new several

new designs for n = 12. All designs are shown in Section 5.4.2. Unfortunately, this

heuristic algorithm eventually blows up, computationally speaking. The bottleneck

occurs because calculating the r-rank is NP-hard; hence, calculating the r-rank of
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thousands of extended designs quickly becomes impractical. Nevertheless, we were

able to apply the algorithm and find new SSDs with high r-rank.

5.4 Designs with High Resolution Rank

5.4.1 Provable Optimal Designs.

The set covering algorithm and design equivalence extension algorithm found the

provably largest k such that SSD(n, k) has a given r-rank where n = 6 and n = 8.

This section includes designs not already shown in the paper.

Table 41. SSD(8,12) with r-rank = 5

1 2 3 4 5 6 7 8 9 10 11 12

+ + + + + + + + + + + +
+ + + + + − − + − − − −
+ + + − − + − − + − − +
+ − − + − − + − − − + −
− + − − − + + + − + + −
− − + − − − + − + + − −
− − − + + + − − − + − +
− − − − + − − + + − + +

Table 42. SSD(8,10) with r-rank = 6

1 2 3 4 5 6 7 8 9 10

+ + + + + + + + + +
+ + + + − − − − − −
+ + − − + + + − − −
+ − − − + − − + + +
− − + − − + − + − −
− − + + + − + − + −
− + − − − + − − + +
− − − + − − + + − +

Table 43. SSD(8,8) with r-rank = 7

1 2 3 4 5 6 7 8

+ + + + + + + +
+ + + + + − − −
+ + − − − + − +
+ − + − − − + −
− + − + − − + +
− − + − + + − +
− − − + − + − −
− − − − + − + −
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5.4.2 Improved or New Designs.

The designs in this section were created with the heuristic design equivalence

extension algorithm. Only designs that represent new and improved designs are

shown. The SSD(10,15) with r-rank = 6 is included because the SSD(10,15) in Jones

et al. (2009) actually had r-rank = 5.

Table 44. SSD(10,13) with r-rank = 8

1 2 3 4 5 6 7 8 9 10 11 12 13

+ + + + + + + + + + + + +
− − − − + + + − − + + + +
+ + + − − + + + − − − − +
− − − + + − − + − − + − +
− − − + − − + + + + − − −
− + − + − + − − + + + − +
+ − + + − − − − − − − + −
+ + − − + − − − − + − + −
+ − + − − − + − + − + − −
− + + − + + − + + − − + −

Table 45. SSD(10,15) with r-rank = 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+ + + + + + + + + + + + + + +
− + + − − + − − − − + − − − +
− + − − − − − − + + − + − + +
+ − − − + + − + + − − − − + −
− − + + + + + − − − − + − + −
+ + + + + − − − − + − − + − −
− − − − − + − + − + + + + − −
+ + − + − − + − + − + + + − −
− − + + − − + + + − − − + − +
+ − − − + − + + − + + − − + +
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Table 46. SSD(12,17) with r-rank = 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

− − − − − − − − − − − − − − − − +
− − − − − + + + + + + + + + + + −
− − − + + − − − − − − + + + + + −
− − + + + − + + + + + − − − − + −
− + + − + + − − + + + − − + + − +
− + + + − + + + − − + − + − + − +
+ − + − + + − + − − − + − − + − −
+ − + + − + + − − + − − + + − + +
+ + − − + − + − − + + + + − − + −
+ + − + − − + − + + − + − + + − +
+ + − + + + − + + − − − − − − + +
+ + + − − − − + + − + + + + − − −

Table 47. SSD(12,18) with r-rank = 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

+ + + + + + + + + + + + + + + + + +
+ − − − + − − − + + − − + − + + − −
− + + − − + + + − − + − + − + + − −
− + − − + − + − − + + + + + − − − −
+ − − + + + − + + − + − + − − − + +
− + + − + − + − + − − + − − − − − +
+ − − + − − + − − + − − + − − − + +
− − + + − + − − − + − + − + + − − +
− − − − − − + + − + + + − − + + + +
+ + + − + + − − − − − − − + + − + −
− − + + − − − + + − + − − + − + + −
+ + − + − + − + + − − + − + − + − −

Table 48. SSD(12,22) with r-rank = 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

+ + + + + + + + + + + + + + + + + + + + + +
+ − − − + − − − + + − − + − + + − − + − + −
− + + − − + + + − − + − + − + + − − + + − +
− + − − + − + − − + + + + + − − − − + − − −
+ − − + + + − + + − + − + − − − + + + − − +
− + + − + − + − + − − + − − − − − − − − + +
+ − − + − − + − − + − − + − − − + − − + + −
− − + + − + − − − + − + − + + − − + − + − +
− − − − − − + + − + + + − − + + + + − − + +
+ + + − + + − − − − − − − + + − + + − + + −
− − + + − − − + + − + − − + − + + − + − − −
+ + − + − + − + + − − + − + − + − + − + − −
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Table 49. SSD(12,24) with r-rank = 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

+ + + + + + + + + + + + + + + + + + + + + + + +
+ − − − + − − − + + − − + − + + − + + − − − − −
− + + − − + + + − − + − + − + + − + + + − − − +
− + − − + − + − − + + + + + − − − − − − + − + −
+ − − + + + − + + − + − + − − − + + − + − − + −
− + + − + − + − + − − + − − − − + + − + + + − +
+ − − + − − + − − + − − + − − − − − − − + + − +
− − + + − + − − − + − + − + + − − − − + − + + +
− − − − − − + + − + + + − − + + + − + − − + + −
+ + + − + + − − − − − − − + + − + − + − + + − −
− − + + − − − + + − + − − + − + + + + − − − + +
+ + − + − + − + + − − + − + − + − − − + + − − −

Table 50. SSD(12,41) with r-rank = 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

+ + + + + + + + + + + + + + + + + + + + +
+ − − − + − − − + + − − + − + + − + + − −
− + + − − + + + − − + − + − + + − + + + −
− + − − + − + − − + + + + + − − − − − − +
+ − − + + + − + + − + − + − − − + + − + −
− + + − + − + − + − − + − − − − + + − + +
+ − − + − − + − − + − − + − − − − − − − +
− − + + − + − − − + − + − + + − − − − + −
− − − − − − + + − + + + − − + + + − + − −
+ + + − + + − − − − − − − + + − + − + − +
− − + + − − − + + − + − − + − + + + + − −
+ + − + − + − + + − − + − + − + − − − + +

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

+ + + + + + + + + + + + + + + + + + + +
− − + + − − − + − − − − + + + + − + − −
− − − − + + − − + + + + − − − + − − + −
− − − − − − − − − + + − − + − − + − + +
− + − − − + − + − + + − + + + − − + − +
+ + − + + + + + + − − − + − − + − − + +
+ − − − + − + − − − + + + − − + + + + −
+ − + − − − + − − − − − + + + − + + + +
+ + + − + + − + + − − + − − − − − + − +
+ + − + − − − − + + − + − − + − + − − −
− − + + + + + + − + − − − + + − + − − −
− + + + − − + − + − + + − − − + − − − −
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5.4.3 Summary of Known Designs.

All results for the r-rank of SSDs with n = 6, 8, 10, or 12 are summarized in Table

51. Some of the designs were also discovered independently by Jones et al. (2009) and

Miller and Tang (2013). New designs presented here are marked in bold, and designs

proven to have the maximum number of columns for a given r-rank are indicated with

“*”. The designs with n = 10 are thought to be near optimal because we performed

an extensive, although incomplete, search of the design space.

Table 51. Maximum k such that SSD(n, k) has r-rank = g. Numbers with * are optimal,
and numbers in bold signify new designs.

g n
6 8 10 12

3 10* 35* 126* 462*
4 6* 14* 24 48
5 6* 12* 23 41
6 . 10* 15 24
7 . 8* 14 22
8 . . 13 18
9 . . 11 17

10 . . . 15
11 . . . 14

5.5 Discussion

This paper explored the creation of balanced, two-level supersaturated designs

with high resolution-rank. Specifically, we searched for the largest number of columns,

k, such that SSD(n, k) has r-rank = g. New designs and a summary of all known

SSDs with n = 6, 8, 10,, and 12 were reported. Moreover, we discussed the overall

difficulty of finding SSDs with high r-rank. The search quickly becomes intractable,

even for a moderate number of runs, n. In future work, we hope to run the algorithms

presented here on a more powerful computer.
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VI. Summary and Conclusions

Supersaturated designs can be used in large screening experiments when the num-

ber of factors exceeds the number of available runs. This dissertation explored the

construction, analysis, and data-driven augmentation of such designs. Chapter II

gave an introduction to large screening experiments and discussed the basics of su-

persaturated designs. It also presented a brief summary of construction and analysis

techniques, as well as a novel approach to add runs to the designs to discriminate

competing models. More in-depth research was done in Chapters III, IV, and V,

which form the heart of this research. Each chapter addressed a specific challenge in

the field and proposed an original research contribution to address the challenge.

First, the difficulty when using a supersaturated design stems from the inability to

simultaneously estimate all main-effects in a linear model. Numerous analysis meth-

ods for supersaturated designs have been proposed, but no method can be guaranteed

to find the true underlying model. Chapter III provided detailed explanations and

examples of why this occurs. Further, it proposed two analysis methods to mitigate

Type I errors and presented a comprehensive (and corrected) review of past simu-

lation studies on the Williams (1968)’s data set. Moreover, the chapter serves as a

good introduction to supersaturated designs for those not familiar with the topic.

In any experiment, the only way to get more information is to collect more data.

Supersaturated designs, with their limited run-size, would certainly provide more

definitive results if the experimenter could perform more experimental runs. Chapter

IV developed the methodology to do this. The specific research question was presented

as: “Suppose after running an SSD(n1, k), the experimenter can afford n2 more runs

to resolve ambiguities. What is the best way to augment the original design to

reduce uncertainty and get the most information out of the final SSD(n1 +n2, k)?” A

Bayesian D-optimality augmentation technique was described which uses information
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gained from the initial experiment to strategically plan the best follow-up runs. In

a simulation study, the proposed method outperformed the augmentation strategy

presented in Gupta et al. (2010), which added runs based solely on reducing the

design’s E(s2).

Chapter V explored the construction of balanced, two-level supersaturated designs

with high resolution-rank. The resolution-rank of a design X is the maximum number

g such that all subsets of g columns in X are linearly independent. It directly measures

the ability of a design to estimate models. As such, we searched for the largest designs

for a given run-size, n, and resolution-rank, g. Using binary integer programming and

design isomorphism properties, we created new designs with high resolution-rank and

summarized all results available in the literature.

6.1 Recommendations for Future Research

This work focused on two-level supersaturated designs with continuous factors and

a single response variable. It would be interesting to study the proposed methods on

mixed-level designs with categorical factors and multiple responses. The formula-

tion of the Bayesian D-optimal augmentation process on mixed-level designs would

be particulary interesting, as the study of mixed-level designs seems to be gaining

momentum. See, for example, Liu and Liu (2011) and Sun et al. (2011). As these

designs become more prevalent, it will be important to find ways to add follow-up

runs.

Another interesting area for future work is the exploration of r-rank on nonbal-

anced designs (i.e. there exists a column, xi of X =SSD(n, k) such that 1′xi 6= 0.

This is certainly the case if n is odd. But, if n is even, it would be interesting to see

how r-rank is affected if balance is abandoned. Related work has been done in the

field of compressed sensing. See, for example, Candes and Tao (2007).
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6.1.1 Compressed Sensing.

While the applied statistics and industrial engineering communities studied and

proposed new results for supersaturated designs, the applied mathematics community

developed theory for the increasingly popular field compressed sensing. The amount

of signal data collected today is huge, and it is impossible to store it all. The idea

of compressed sensing is to store a small, linear collection of measurements from

the data, so long as it’s possible to recover the actual signal. Compressed sensing

relies on the assumption of spare signals, just like supersaturated designs rely on

the assumption of sparse main-effects. Matrices in compressed sensing are typically

much wider than design matrices (e.g. thousands of columns) and have a tremendous

amount of columns compared to rows (k � n). A key performance metric of these

matrices is called Spark. Before a formal definition, let’s review some notation.

6.1.1.1 Notation.

Let v = (v1, v2, . . . , vk)
′ be an k × 1 vector in Rk.

• The support of v, denoted supp(v), is defined as the set supp(v) = {i|vi 6= 0}.

• The zero norm or `0-norm of v, denoted ‖v‖0, is the number of nonzero elements

in v, i.e. ‖v‖0 = |supp(v)|. While this is called a norm, it is not a true norm

of a vector space because it does not scale: ‖αv‖0 6= |α|‖v‖0 if α 6= 0.

6.1.1.2 Spark.

Definition The Spark of a matrix X is the size of the smallest subset of columns

that are linearly dependent. i.e.

Spark(X) = min
v 6=0
‖v‖0 such that Xv = 0. (6.1)
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Notice the Spark of a matrix is identical its MDS-resolution. Thus, Spark(X) =

r-rank(X) - 1.

6.1.2 Random Matrices.

One of the key breakthroughs in compressed sensing was the realization that ran-

dom matrices are full spark. In other words, if a matrix M was generated randomly,

typically with independent Gaussian or binary ±1 entries, the matrix would have

many desirable properties. What’s interesting, perhaps fortuitous, is that supersatu-

rated designs were first proposed as random designs. Satterthwaite (1959) and Budne

(1959) suggested designs with a random balance ±1 entries in each column would be

ideal to screen a large number of factors with little runs, assuming effect sparsity. In

fact, the second ever issue of the journal Technometrics was dedicated to “random

balance” designs. What’s even more interesting is that the majority of the issue was

dedicated to some of the top statisticians of time (e.g. G.E.P. Box, J.W. Tukey,

& J.S. Hunter) criticizing the idea and utility of random balance designs (Youden

et al., 1959). Here are some amusing quotes from the discussion on the papers of

Satterthwaite and Budne:

• “Whenever I have heard presentations of random balance I have always reached

the conclusion: ‘This is nonsense because there simply aren’t enough degrees of

freedom to go around’.” (O. Kempthorne)

• “I believe Dr. Satterthwaite and Mr. Budne do not have sufficient fear of the

difficulty of interpreting random balanced designs.” (O. Kempthorne)

• “Dr. Satterthwaite lists 7 circumstances in which random balance is likely to

be a good procedure. I found that I could see possibility of agreement with him

on none...” (O. Kempthorne)
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• “I think this presentation of random balance raises many questions which are im-

portant to statistics, even if random balance should fade away.” (O. Kempthorne)

• “Random balance is, in part, directed toward the needs of the statistically

untrained.” (J. W. Tukey)

• “There are those who say that random balance is the ‘wave of the future’, that

most experimentation will come to use random assignment of levels or versions

of each factor to trials. They are wrong. There are those who say that random

balance is worthless, inefficient, and dangerous. They, too, are wrong, though

not quite as wrong.” (J. W. Tukey).

• “Let me therefore begin by saying that I believe the only thing wrong with

random balance is random balance.” (G. E. P. Box)

To be fair, many of the criticism stemmed from claims that random balance designs

are easy and suitable replacements for traditional designs (n > k). Work in D-

optimal designs, non-aliasing designs, etc., show that systematic and computational

construction of designs is preferred. On the issue of supersaturated designs, however,

reviewers with slightly less critical.

• “I think it is perfectly natural and wise to do some supersaturated experiments.

...[I]t seems to me..., random balance is going to be used completely or indefi-

nitely in the supersaturated region.” (J. W. Tukey)

• (On supersaturated designs) “Satterthwaite and his colleagues have done a con-

siderable service to statistics in pointing out the importance of this situation,

although I do not believe that even here random balance is the answer.” (G. E.

P. Box)
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Box went on to say supersaturated designs should be constructed systematically,

suggesting an efficient design would have the column vectors at maximum angles

with one another. Indeed, the first systematic SSDs by Booth and Cox (1962) were

introduced a few years later using the E(s2) criterion, and researchers haven’t looked

back. Perhaps, however, mathematical theory has caught up to random designs.

For example, in Chapter V, it was shown that an 8-run balanced SSD with r-rank

= 4 can have at most 14 columns. If we removed the balanced requirement and

construct a design randomly, we can quickly generate an SSD(8,16) with r-rank =

4. Balance is typically a concern with smaller matrices because it ensures no main

effect is correlated with the grand mean. But, as n increases, a random column will

be “nearly balanced” and the large n will keep the correlation to a minimum. Thus,

it may be the case that large two-level supersaturated designs should be constructed

randomly to optimize the r-rank. This will be explored further, as it could aid in the

construction and application of supersaturated designs.
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